
Kazuhide Kamiya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5276391/publications.pdf Version: 2024-02-01

Κλ7ΠΗΙΝΕ ΚΛΜΙΥΛ

#	Article	IF	CITATIONS
1	Heterometallic Benzenehexathiolato Coordination Nanosheets: Periodic Structure Improves Crystallinity and Electrical Conductivity. Advanced Materials, 2022, 34, e2106204.	11.1	24
2	Two-Dimensional Metal–Organic Framework Acts as a Hydrogen Evolution Cocatalyst for Overall Photocatalytic Water Splitting. ACS Catalysis, 2022, 12, 3881-3889.	5.5	32
3	Coordination chemistry for innovative carbon-related materials. Coordination Chemistry Reviews, 2022, 466, 214577.	9.5	5
4	Slip-Stacking of Benzothiadiazole Can Provide a Robust Structural Motif for Porous Hydrogen-Bonded Organic Frameworks. Crystal Growth and Design, 2022, 22, 4472-4479.	1.4	2
5	Synthesis and electrocatalysis of ordered carbonaceous frameworks from Ni porphyrin with four ethynyl groups. Catalysis Today, 2022, , .	2.2	1
6	CO2 Electrolysis in Integrated Artificial Photosynthesis Systems. Chemistry Letters, 2021, 50, 166-179.	0.7	17
7	Iron porphyrin-derived ordered carbonaceous frameworks. Catalysis Today, 2021, 364, 164-171.	2.2	12
8	Metal-doped bipyridine linked covalent organic framework films as a platform for photoelectrocatalysts. Journal of Materials Chemistry A, 2021, 9, 11073-11080.	5.2	25
9	Force-responsive ordered carbonaceous frameworks synthesized from Ni-porphyrin. Chemical Communications, 2021, 57, 6007-6010.	2.2	10
10	Effect of Cobalt Speciation and the Graphitization of the Carbon Matrix on the CO ₂ Electroreduction Activity of Co/N-Doped Carbon Materials. ACS Applied Materials & Interfaces, 2021, 13, 15122-15131.	4.0	13
11	Sn Atoms on Cu Nanoparticles for Suppressing Competitive H ₂ Evolution in CO ₂ Electrolysis. ACS Applied Nano Materials, 2021, 4, 4994-5003.	2.4	16
12	lsotopic Depth Profiling of Discharge Products Identifies Reactive Interfaces in an Aprotic Li–O ₂ Battery with a Redox Mediator. Journal of the American Chemical Society, 2021, 143, 7394-7401.	6.6	29
13	Rational Design of Electrocatalysts Comprising Single-Atom-Modified Covalent Organic Frameworks for the N ₂ Reduction Reaction: A First-Principles Study. Journal of Physical Chemistry C, 2021, 125, 10983-10990.	1.5	22
14	Grafting chelating groups on 2D carbon for selective heavy metal adsorption. Nanoscale Advances, 2021, 3, 5823-5829.	2.2	2
15	Rational Molecular Design of Electrocatalysts Based on Single-Atom Modified Covalent Organic Frameworks for Efficient Oxygen Reduction Reaction. ACS Applied Energy Materials, 2020, 3, 1644-1652.	2.5	44
16	Selective single-atom electrocatalysts: a review with a focus on metal-doped covalent triazine frameworks. Chemical Science, 2020, 11, 8339-8349.	3.7	53
17	Dynamic Changes in Charge Transfer Resistances during Cycling of Aprotic Li–O ₂ Batteries. ACS Applied Materials & Interfaces, 2020, 12, 42803-42810.	4.0	10
18	Synergistic Effect of Binary Electrolyte on Enhancement of the Energy Density in Li–O ₂ Batteries. Journal of Physical Chemistry Letters, 2020, 11, 7657-7663.	2.1	5

KAZUHIDE KAMIYA

#	Article	IF	CITATIONS
19	Glycerol Oxidation Catalyzed by High-valency Ruthenium Species at Electrochemical Interfaces. Chemistry Letters, 2020, 49, 513-516.	0.7	3
20	Carbon-rich materials with three-dimensional ordering at the angstrom level. Chemical Science, 2020, 11, 5866-5873.	3.7	28
21	Aqueous Electrochemical Partial Oxidation of Gaseous Ethylbenzene by a Ru-Modified Covalent Triazine Framework. ACS Applied Materials & Interfaces, 2020, 12, 29376-29382.	4.0	5
22	â€~Click' conjugated porous polymer nanofilm with a large domain size created by a liquid/liquid interfacial protocol. Chemical Communications, 2020, 56, 3677-3680.	2.2	5
23	Lightâ€Intensityâ€Responsive Changes of Products in Photocatalytic Reduction of Nitrous Acid on a Cuâ€Doped Covalent Triazine Framework–TiO 2 Hybrid. ChemSusChem, 2020, 13, 3462-3468.	3.6	16
24	Synthesis of Ordered Carbonaceous Framework with Microporosity from Porphyrin with Ethynyl Groups. Chemistry Letters, 2020, 49, 619-623.	0.7	14
25	Development of Robust Electrocatalysts Comprising Single-atom Sites with Designed Coordination Environments. Electrochemistry, 2020, 88, 489-496.	0.6	5
26	Electrochemical CO ₂ Reduction Using Gas Diffusion Electrode Loading Ni-doped Covalent Triazine Frameworks in Acidic Electrolytes. Electrochemistry, 2020, 88, 359-364.	0.6	17
27	Metal-Doped Bipyridine-Linked Covalent Organic Framework Nanosheets As a Novel Platform for Photoelectrocatalysts. ECS Meeting Abstracts, 2020, MA2020-02, 3872-3872.	0.0	0
28	Aqueous Electrochemical Partial Oxidation of Hydrocarbons By a Gas Diffusion Electrode Carrying Ru-Doped Covalent Triazine Framework. ECS Meeting Abstracts, 2020, MA2020-02, 2846-2846.	0.0	0
29	Electrochemical Reduction of CO2 Using Carbon-Based Materials Modified with 3d-Metal Atoms As Electrocatalysts. ECS Meeting Abstracts, 2020, MA2020-02, 3142-3142.	0.0	0
30	The endogenous redox rhythm is controlled by a central circadian oscillator in cyanobacterium Synechococcus elongatus PCC7942. Photosynthesis Research, 2019, 142, 203-210.	1.6	5
31	Negative differential resistance as a critical indicator for the discharge capacity of lithium-oxygen batteries. Nature Communications, 2019, 10, 596.	5.8	16
32	Electrochemical impedance analysis of the Li/Au-Li7La3Zr2O12 interface during Li dissolution/deposition cycles: Effect of pre-coating Li7La3Zr2O12 with Au. Journal of Electroanalytical Chemistry, 2019, 835, 143-149.	1.9	33
33	Electrochemical Formation of Fe(IV)=O Derived from H ₂ O ₂ on a Hematite Electrode as an Active Catalytic Site for Selective Hydrocarbon Oxidation Reactions. ChemPhysChem, 2019, 20, 648-650.	1.0	12
34	Electrochemical Formation of Fe(IV)=O Derived from H2 O2 on a Hematite Electrode as an Active Catalytic Site for Selective Hydrocarbon Oxidation Reactions. ChemPhysChem, 2019, 20, 647-647.	1.0	0
35	Expansion of the Potential Region for Sustained Discharge of Non-aqueous Li-O ₂ Batteries Using an Oxygen-enriched Carbon Cathode. Chemistry Letters, 2019, 48, 562-565.	0.7	8
36	Selective Reduction of Nitrate by a Local Cell Catalyst Composed of Metal-Doped Covalent Triazine Frameworks. ACS Catalysis, 2018, 8, 2693-2698.	5.5	41

KAZUHIDE KAMIYA

#	Article	IF	CITATIONS
37	Electrochemical biotechnologies minimizing the required electrode assemblies. Current Opinion in Biotechnology, 2018, 50, 182-188.	3.3	29
38	Sulfur‣inked Covalent Triazine Frameworks Doped with Coordinatively Unsaturated Cu(I) as Electrocatalysts for Oxygen Reduction. ChemElectroChem, 2018, 5, 805-810.	1.7	26
39	Cooperative Electrocatalytic Reduction of Nitrobenzene to Aniline in Aqueous Solution by Copper-modified Covalent Triazine Framework. Chemistry Letters, 2018, 47, 304-307.	0.7	11
40	Covalent triazine framework modified with coordinatively-unsaturated Co or Ni atoms for CO ₂ electrochemical reduction. Chemical Science, 2018, 9, 3941-3947.	3.7	164
41	Dynamic changes in charge-transfer resistance at Li metal/Li7La3Zr2O12 interfaces during electrochemical Li dissolution/deposition cycles. Journal of Power Sources, 2018, 376, 147-151.	4.0	95
42	Covalent organic frameworks (COFs) to create new catalytic materials. Impact, 2018, 2018, 57-59.	0.0	3
43	Photo-induced direct interfacial charge transfer at TiO2 modified with hexacyanoferrate(iii). Photochemical and Photobiological Sciences, 2018, 17, 1153-1156.	1.6	2
44	Critical Indicator Determining the Discharge Capacity of Li-Oxygen Batteries. ECS Meeting Abstracts, 2018, , .	0.0	0
45	Oxygen-Tolerant Electrodes with Single-Atom Platinum Modified Covalent Triazine Frameworks for the Hydrogen Oxidation Reaction. ECS Meeting Abstracts, 2018, , .	0.0	0
46	Specific Interaction between Redox Phospholipid Polymers and Plastoquinone in Photosynthetic Electron Transport Chain. ChemPhysChem, 2017, 18, 878-881.	1.0	8
47	Real-time monitoring of intracellular redox changes in Methylococcus capsulatus (Bath) for efficient bioconversion of methane to methanol. Bioresource Technology, 2017, 241, 1157-1161.	4.8	18
48	Effects of contaminant water on coulombic efficiency of lithium deposition/dissolution reactions in tetraglyme-based electrolytes. Journal of Power Sources, 2017, 350, 73-79.	4.0	34
49	Ru atom-modified covalent triazine framework as a robust electrocatalyst for selective alcohol oxidation in aqueous electrolytes. Chemical Communications, 2017, 53, 10437-10440.	2.2	45
50	Synthesis of ordered carbonaceous frameworks from organic crystals. Nature Communications, 2017, 8, 109.	5.8	60
51	Selective electrochemical reduction of nitrogen oxides by covalent triazine frameworks modified with single Pt atoms. Journal of Electroanalytical Chemistry, 2017, 800, 54-59.	1.9	24
52	Catalytic methane combustion over iron/nitrogen-doped silicon carbide. RSC Advances, 2016, 6, 85559-85563.	1.7	3
53	Oxygenâ€Tolerant Electrodes with Platinumâ€Loaded Covalent Triazine Frameworks for the Hydrogen Oxidation Reaction. Angewandte Chemie, 2016, 128, 13378-13382.	1.6	25
54	Oxygenâ€Tolerant Electrodes with Platinumâ€Loaded Covalent Triazine Frameworks for the Hydrogen Oxidation Reaction. Angewandte Chemie - International Edition, 2016, 55, 13184-13188.	7.2	134

KAZUHIDE KAMIYA

#	Article	IF	CITATIONS
55	Nickelâ€Nitrogenâ€Modified Graphene: An Efficient Electrocatalyst for the Reduction of Carbon Dioxide to Carbon Monoxide. Small, 2016, 12, 6083-6089.	5.2	228
56	Electrocatalytic Reduction of Nitrate to Nitrous Oxide by a Copper-Modified Covalent Triazine Framework. Journal of Physical Chemistry C, 2016, 120, 15729-15734.	1.5	117
57	Efficient oxygen reduction reaction electrocatalysts synthesized from an iron-coordinated aromatic polymer framework. Journal of Materials Chemistry A, 2016, 4, 3858-3864.	5.2	20
58	Copperâ€Modified Covalent Triazine Frameworks as Nonâ€Nobleâ€Metal Electrocatalysts for Oxygen Reduction. Angewandte Chemie - International Edition, 2015, 54, 11068-11072.	7.2	237
59	Efficient Bifunctional Fe/C/N Electrocatalysts for Oxygen Reduction and Evolution Reaction. Journal of Physical Chemistry C, 2015, 119, 2583-2588.	1.5	150
60	Heat-treated 3,5-diamino-1,2,4-triazole/graphene hybrid functions as an oxygen reduction electrocatalyst with high activity and stability. Electrochimica Acta, 2015, 180, 173-177.	2.6	28
61	In Situ CO ₂ -Emission Assisted Synthesis of Molybdenum Carbonitride Nanomaterial as Hydrogen Evolution Electrocatalyst. Journal of the American Chemical Society, 2015, 137, 110-113.	6.6	278
62	Platinum-modified covalent triazine frameworks hybridized with carbon nanoparticles as methanol-tolerant oxygen reduction electrocatalysts. Nature Communications, 2014, 5, 5040.	5.8	289
63	Graphene Defects as Active Catalytic Sites that are Superior to Platinum Catalysts in Electrochemical Nitrate Reduction. ChemElectroChem, 2014, 1, 858-862.	1.7	28
64	Iron–Nitrogen Coordination in Modified Graphene Catalyzes a Fourâ€Electronâ€Transfer Oxygen Reduction Reaction. ChemElectroChem, 2014, 1, 877-884.	1.7	16
65	Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nature Communications, 2013, 4, 2390.	5.8	923
66	Hydrogen Evolution by Tungsten Carbonitride Nanoelectrocatalysts Synthesized by the Formation of a Tungsten Acid/Polymer Hybrid Inâ€Situ. Angewandte Chemie - International Edition, 2013, 52, 13638-13641.	7.2	133
67	Instantaneous one-pot synthesis of Fe–N-modified graphene as an efficient electrocatalyst for the oxygen reduction reaction in acidic solutions. Chemical Communications, 2012, 48, 10213.	2.2	106
68	Acceleration effect of adsorbed thiocyanate ions on electrodeposition of CuSCN, causing spontaneous electrochemical oscillation. Chemical Physics Letters, 2012, 530, 77-80.	1.2	21
69	Photocatalytic and Electrochemical Characterizations of Cu(II)-Grafted TiO2. Electrochemistry, 2011, 79, 793-796.	0.6	11
70	Bistability in the surface dipole of silicon grafted with copper nanoparticles: An in-situ electrochemical MIR-FTIR study. Electrochemistry Communications, 2011, 13, 1447-1450.	2.3	0
71	Characterization of Cr(III)-grafted TiO2 for photocatalytic reaction under visible light. Applied Catalysis B: Environmental, 2010, 96, 142-147.	10.8	78
72	Direct electron-transfer conduits constructed at the interface between multicopper oxidase and nanocrystalline semiconductive Fe oxides. Chemical Physics Letters, 2010, 498, 307-311.	1.2	12

#	Article	IF	CITATIONS
73	Visible Light-Sensitive Cu(II)-Grafted TiO ₂ Photocatalysts: Activities and X-ray Absorption Fine Structure Analyses. Journal of Physical Chemistry C, 2009, 113, 10761-10766.	1.5	393
74	Efficient visible light-sensitive photocatalysts: Grafting Cu(II) ions onto TiO2 and WO3 photocatalysts. Chemical Physics Letters, 2008, 457, 202-205.	1.2	468