Charles J Dorman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5276382/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Reciprocally rewiring and repositioning the Integration Host Factor (IHF) subunit genes in Salmonella enterica serovar Typhimurium: impacts on physiology and virulence. Microbial Genomics, 2022, 8, .	1.0	3
2	Nucleus Organization of the Bacterial Nucleoid. , 2021, , 409-414.		0
3	Consequences of producing DNA gyrase from a synthetic <i>gyrBA</i> operon in <i>Salmonella enterica</i> serovar Typhimurium. Molecular Microbiology, 2021, 115, 1410-1429.	1.2	7
4	CRISPR-Cas, DNA Supercoiling, and Nucleoid-Associated Proteins. Trends in Microbiology, 2020, 28, 19-27.	3.5	26
5	Network Rewiring: Physiological Consequences of Reciprocally Exchanging the Physical Locations and Growth-Phase-Dependent Expression Patterns of the <i>Salmonella fis</i> and <i>dps</i> Genes. MBio, 2020, 11, .	1.8	11
6	Editorial overview: Bacterial regulatory hierarchies and networks. Current Opinion in Microbiology, 2020, 55, iii-v.	2.3	0
7	When is a transcription factor a NAP?. Current Opinion in Microbiology, 2020, 55, 26-33.	2.3	48
8	Human Health and Ocean Pollution. Annals of Global Health, 2020, 86, 151.	0.8	240
9	Factors governing orthologous RpoD and H-NS evolution in Salmonella enterica Serovar Typhimurium and Escherichia coli. Access Microbiology, 2020, 2, .	0.2	0
10	DNA supercoiling and transcription in bacteria: a two-way street. BMC Molecular and Cell Biology, 2019, 20, 26.	1.0	86
11	Negative supercoiling of DNA by gyrase is inhibited in <i>Salmonella enterica</i> serovar Typhimurium during adaptation to acid stress. Molecular Microbiology, 2018, 107, 734-746.	1.2	18
12	The Evolution of Gene Regulatory Mechanisms in Bacteria. Grand Challenges in Biology and Biotechnology, 2018, , 125-152.	2.4	4
13	Regulatory Hierarchies Controlling Virulence Gene Expression in Shigella flexneri and Vibrio cholerae. Frontiers in Microbiology, 2018, 9, 2686.	1.5	31
14	Control of virulence gene transcription by indirect readout in <i>Vibrio cholerae</i> and <i>Salmonella enterica</i> serovar Typhimurium. Environmental Microbiology, 2017, 19, 3834-3845.	1.8	26
15	Broad-scale redistribution of mRNA abundance and transcriptional machinery in response to growth rate in Salmonella enterica serovar Typhimurium. Microbial Genomics, 2017, 3, e000127.	1.0	6
16	Re-engineering cellular physiology by rewiring high-level global regulatory genes. Scientific Reports, 2016, 5, 17653.	1.6	22
17	DNA supercoiling is a fundamental regulatory principle in the control of bacterial gene expression. Biophysical Reviews, 2016, 8, 89-100.	1.5	89
18	The Interplay between DNA Topology and Accessory Factors in Site-Specific Recombination in Bacteria and their Bacteriophages. Science Progress, 2016, 99, 420-437.	1.0	11

#	Article	IF	CITATIONS
19	DNA supercoiling is a fundamental regulatory principle in the control of bacterial gene expression. Biophysical Reviews, 2016, 8, 209-220.	1.5	73
20	Bacterial pathogen gene regulation: a DNA-structure-centred view of a protein-dominated domain. Clinical Science, 2016, 130, 1165-1177.	1.8	11
21	Integrating small molecule signalling and <scp>H</scp> â€ <scp>NS</scp> antagonism in <scp><i>V</i></scp> <i>ibrio cholerae</i> , a bacterium with two chromosomes. Molecular Microbiology, 2015, 97, 612-615.	1.2	7
22	Coordination of Bacterial Virulence Gene Expression. , 2015, , 315-335.		0
23	Agnès Fouet – departing Editor-in-Chief. Microbiology (United Kingdom), 2015, 161, 1149-1149.	0.7	0
24	Function of Nucleoid-Associated Proteins in Chromosome Structuring and Transcriptional Regulation. Journal of Molecular Microbiology and Biotechnology, 2014, 24, 316-331.	1.0	47
25	Bacterial Regulon Evolution: Distinct Responses and Roles for the Identical OmpR Proteins of Salmonella Typhimurium and Escherichia coli in the Acid Stress Response. PLoS Genetics, 2014, 10, e1004215.	1.5	90
26	A novel role for antibiotic resistance plasmids in facilitating <scp><i>S</i></scp> <i>almonella</i> adaptation to nonâ€host environments. Environmental Microbiology, 2014, 16, 950-962.	1.8	26
27	H-NS-like nucleoid-associated proteins, mobile genetic elements and horizontal gene transfer in bacteria. Plasmid, 2014, 75, 1-11.	0.4	78
28	Co-operative roles for DNA supercoiling and nucleoid-associated proteins in the regulation of bacterial transcription. Biochemical Society Transactions, 2013, 41, 542-547.	1.6	49
29	Genome architecture and global gene regulation in bacteria: making progress towards a unified model?. Nature Reviews Microbiology, 2013, 11, 349-355.	13.6	172
30	Transmission of an Oxygen Availability Signal at the Salmonella enterica Serovar Typhimurium fis Promoter. PLoS ONE, 2013, 8, e84382.	1.1	19
31	A Fundamental Regulatory Mechanism Operating through OmpR and DNA Topology Controls Expression of Salmonella Pathogenicity Islands SPI-1 and SPI-2. PLoS Genetics, 2012, 8, e1002615.	1.5	119
32	VirB-Mediated Positive Feedback Control of the Virulence Gene Regulatory Cascade of Shigella flexneri. Journal of Bacteriology, 2012, 194, 5264-5273.	1.0	27
33	The transcriptional landscape and small RNAs of <i>Salmonella enterica</i> serovar Typhimurium. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1277-86.	3.3	373
34	LeuO is a global regulator of gene expression in <i>Salmonella enterica</i> serovar Typhimurium. Molecular Microbiology, 2012, 85, 1072-1089.	1.2	68
35	DNA supercoiling is differentially regulated by environmental factors and FIS in <i>Escherichia coli</i> and <i>Salmonella enterica</i> . Molecular Microbiology, 2011, 80, 85-101.	1.2	86
36	Regulation of transcription by DNA supercoiling in <i>Mycoplasma genitalium</i> : global control in the smallest known selfâ€replicating genome. Molecular Microbiology, 2011, 81, 302-304.	1.2	25

#	Article	IF	CITATIONS
37	Rational Design of an Artificial Genetic Switch: Co-Option of the H-NS-Repressed <i>proU</i> Operon by the VirB Virulence Master Regulator. Journal of Bacteriology, 2011, 193, 5950-5960.	1.0	28
38	Nucleoid-associated protein HU controls three regulons that coordinate virulence, response to stress and general physiology in Salmonella enterica serovar Typhimurium. Microbiology (United) Tj ETQqO O	0 rgBƊ/Øverl	oc l64 0 Tf 50
39	Horizontally acquired homologues of the nucleoidâ€associated protein Hâ€NS: implications for gene regulation. Molecular Microbiology, 2010, 75, 264-267.	1.2	19
40	Genomeâ€wide analysis of the Hâ€NS and Sfh regulatory networks in <i>Salmonella</i> Typhimurium identifies a plasmidâ€encoded transcription silencing mechanism. Molecular Microbiology, 2010, 76, 1250-1265.	1.2	84
41	Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nature Reviews Microbiology, 2010, 8, 185-195.	13.6	755
42	The Effect of Mobile Element IS10 on Experimental Regulatory Evolution in Escherichia coli. Molecular Biology and Evolution, 2010, 27, 2105-2112.	3.5	40
43	Bacterial Chromatin. , 2010, , .		7
44	H-NS Silences <i>gfp</i> , the Green Fluorescent Protein Gene: <i>gfp</i> ^{TCD} Is a Genetically Remastered <i>gfp</i> Gene with Reduced Susceptibility to H-NS-Mediated Transcription Silencing and with Enhanced Translation. Journal of Bacteriology, 2010, 192, 4790-4793.	1.0	20
45	Bacterial Chromatin and Gene Regulation. , 2010, , 245-250.		1
46	Compensatory Evolution of Gene Regulation in Response to Stress by Escherichia coli Lacking RpoS. PLoS Genetics, 2009, 5, e1000671.	1.5	84
47	DNA relaxationâ€dependent phase biasing of the <i>fim</i> genetic switch in <i>Escherichia coli</i> depends on the interplay of Hâ€NS, IHF and LRP. Molecular Microbiology, 2009, 74, 1071-1082.	1.2	62
48	DNA bridging and antibridging: a role for bacterial nucleoid-associated proteins in regulating the expression of laterally acquired genes. FEMS Microbiology Reviews, 2009, 33, 587-592.	3.9	63
49	Global regulators and environmental adaptation in Gram-negative pathogens. Clinical Microbiology and Infection, 2009, 15, 47-50.	2.8	14
50	Small molecule signaling. Current Opinion in Microbiology, 2009, 12, 125-128.	2.3	10
51	Bacterial DNA topology and infectious disease. Nucleic Acids Research, 2009, 37, 672-678.	6.5	67
52	Chapter 2 Nucleoid-Associated Proteins and Bacterial Physiology. Advances in Applied Microbiology, 2009, 67, 47-64.	1.3	104
53	The Virulence Plasmids of Shigella flexneri. Microbiology Monographs, 2009, , 151-170.	0.3	5
54	H-NS and genomic bridge building: lessons from the human pathogen Salmonella Typhi. Microbiology (United Kingdom), 2009, 155, 2114-2115.	0.7	2

#	Article	IF	CITATIONS
55	Regulatory integration of horizontally-transferred genes in bacteria. Frontiers in Bioscience, 2009, 14, 4103-12.	0.8	16
56	DNA sequence heterogeneity in Fim tyrosineâ€integrase recombinaseâ€binding elements and functional motif asymmetries determine the directionality of the <i>fim</i> genetic switch in <i>Escherichia coli</i> Kâ€12. Molecular Microbiology, 2008, 67, 171-187.	1.2	33
57	Regulation of Transcription in Bacteria by DNA Supercoiling. , 2008, , 155-178.		4
58	The Leucine-Responsive Regulatory Protein, Lrp, Activates Transcription of the <i>fim</i> Operon in <i>Salmonella enterica</i> Serovar Typhimurium via the <i>fimZ</i> Regulatory Gene. Journal of Bacteriology, 2008, 190, 602-612.	1.0	49
59	Autoregulated expression of the gene coding for the leucine-responsive protein, Lrp, a global regulator in Salmonella enterica serovar Typhimurium. Microbiology (United Kingdom), 2008, 154, 2008-2016.	0.7	13
60	Anti-silencing: overcoming H-NS-mediated repression of transcription in Gram-negative enteric bacteria. Microbiology (United Kingdom), 2008, 154, 2533-2545.	0.7	232
61	H-NS Antagonism in Shigella flexneri by VirB, a Virulence Gene Transcription Regulator That Is Closely Related to Plasmid Partition Factors. Journal of Bacteriology, 2007, 189, 3403-3413.	1.0	67
62	An H-NS-like Stealth Protein Aids Horizontal DNA Transmission in Bacteria. Science, 2007, 315, 251-252.	6.0	204
63	Probing bacterial nucleoid structure with optical tweezers. BioEssays, 2007, 29, 212-216.	1.2	12
64	H-NS, the genome sentinel. Nature Reviews Microbiology, 2007, 5, 157-161.	13.6	314
65	Whither microbial sciences?. Nature Reviews Microbiology, 2007, 5, 828-828.	13.6	0
66	Expression of the Fis protein is sustained in lateâ€exponential―and stationaryâ€phase cultures of <i>Salmonella enterica</i> serovar Typhimurium grown in the absence of aeration. Molecular Microbiology, 2007, 66, 237-251.	1.2	40
67	Virulence gene deletion frequency is increased in Shigella flexneri following conjugation, transduction, and transformation. FEMS Microbiology Letters, 2006, 147, 163-172.	0.7	10
68	The integration host factor (IHF) integrates stationary-phase and virulence gene expression in Salmonella enterica serovar Typhimurium. Molecular Microbiology, 2006, 59, 1831-1847.	1.2	159
69	Roles for DNA supercoiling and the Fis protein in modulating expression of virulence genes during intracellular growth ofSalmonella entericaserovar Typhimurium. Molecular Microbiology, 2006, 62, 869-882.	1.2	84
70	Dna Supercoiling and Bacterial Gene Expression. Science Progress, 2006, 89, 151-166.	1.0	67
71	Reciprocal Transcriptional and Posttranscriptional Growth-Phase-Dependent Expression of sfh , a Gene That Encodes a Paralogue of the Nucleoid-Associated Protein H-NS. Journal of Bacteriology, 2006, 188, 7581-7591.	1.0	16
72	DNA Supercoiling and the Lrp Protein Determine the Directionality of fim Switch DNA Inversion in Escherichia coli K-12. Journal of Bacteriology, 2006, 188, 5356-5363.	1.0	47

#	Article	IF	CITATIONS
73	Characterization of the Detachable Rho-Dependent Transcription Terminator of the fimE Gene in Escherichia coli K-12. Journal of Bacteriology, 2005, 187, 8256-8266.	1.0	23
74	Hierarchical gene regulators adapt to its host milieus. International Journal of Medical Microbiology, 2005, 294, 487-502.	1.5	56
75	A global role for Fis in the transcriptional control of metabolism and type III secretion in Salmonella enterica serovar Typhimurium. Microbiology (United Kingdom), 2004, 150, 2037-2053.	0.7	175
76	H-NS: a universal regulator for a dynamic genome. Nature Reviews Microbiology, 2004, 2, 391-400.	13.6	485
77	Virulence Gene Regulation in <i>Shigella</i> . EcoSal Plus, 2004, 1, .	2.1	11
78	Nucleoid Organization of Bacterial Chromosomes. , 2004, , 115-118.		0
79	The gyr genes of Salmonella enterica serovar Typhimurium are repressed by the factor for inversion stimulation, Fis. Molecular Genetics and Genomics, 2003, 270, 56-65.	1.0	47
80	Shigella flexneri 2a strain 2457T expresses three members of the H-NS-like protein family: characterization of the Sfh protein. Molecular Genetics and Genomics, 2003, 270, 66-77.	1.0	65
81	Thinking and decision making, bacterial style: Bacterial Neural Networks, Obernai, France, 7th-12th June 2002. Molecular Microbiology, 2003, 47, 583-593.	1.2	17
82	An extended role for the nucleoid structuring protein H-NS in the virulence gene regulatory cascade of Shigella flexneri. Molecular Microbiology, 2003, 47, 825-838.	1.2	95
83	Three-way interactions among the Sfh, StpA and H-NS nucleoid-structuring proteins of Shigella flexneri 2a strain 2457T. Molecular Microbiology, 2003, 48, 1401-1416.	1.2	72
84	In vitro DNA-binding properties of VirB, theShigella flexnerivirulence regulatory protein. FEBS Letters, 2003, 545, 183-187.	1.3	27
85	Regulation of gene expression by histone-like proteins in bacteria. Current Opinion in Genetics and Development, 2003, 13, 179-184.	1.5	216
86	Molecular Dissection of VirB, a Key Regulator of the Virulence Cascade of Shigella flexneri. Journal of Biological Chemistry, 2002, 277, 15333-15344.	1.6	57
87	In Vivo DNA-Binding and Oligomerization Properties of the Shigella flexneri AraC-Like Transcriptional Regulator VirF as Identified by Random and Site-Specific Mutagenesis. Journal of Bacteriology, 2002, 184, 531-539.	1.0	41
88	Competitive interaction of the OxyR DNA-binding protein and the Dam methylase at the antigen 43 gene regulatory region in Escherichia coli. Molecular Microbiology, 2002, 44, 509-520.	1.2	84
89	A Rho-dependent phase-variable transcription terminator controls expression of the FimE recombinase in Escherichia coli. Molecular Microbiology, 2002, 45, 1107-1117.	1.2	28

90 Regulation of Virulence Gene Expression in Bacterial Pathogens. , 2001, , 75-132.

2

#	Article	IF	CITATIONS
91	Regulation of virulence gene expression in Shigella flexneri, a facultative intracellular pathogen. International Journal of Medical Microbiology, 2001, 291, 89-96.	1.5	72
92	Requirement for the molecular adapter function of StpA at the Escherichia coli bgl promoter depends upon the level of truncated H-NS protein. Molecular Microbiology, 2001, 42, 903-917.	1.2	44
93	DNA TOPOLOGY AND ADAPTATION OF SALMONELLA TYPHIMURIUM TO AN INTRACELLULAR ENVIRONMENT. , 2001, , .		2
94	Effects of local transcription and H-NS on inversion of the fim switch of Escherichia coli. Molecular Microbiology, 2000, 36, 457-466.	1.2	46
95	A role for the Escherichia coli H-NS-like protein StpA in OmpF porin expression through modulation of micF RNA stability. Molecular Microbiology, 2000, 38, 126-139.	1.2	68
96	The Virulence Plasmid of Salmonella typhimurium Contains an Autoregulated Gene, rlgA, That Codes for a Resolvase-like DNA Binding Protein. Plasmid, 2000, 44, 24-33.	0.4	5
97	Interaction of the FimB Integrase with thefimS Invertible DNA Element in Escherichia coliln Vivo and In Vitro. Journal of Bacteriology, 2000, 182, 2953-2959.	1.0	22
98	Use of the stationary phase inducible promoters, spv and dps, to drive heterologous antigen expression in Salmonella vaccine strains. Vaccine, 2000, 18, 1298-1306.	1.7	22
99	DNA topology and adaptation of salmonella typhimurium to an intracellular environment. Philosophical Transactions of the Royal Society B: Biological Sciences, 2000, 355, 565-574.	1.8	28
100	A role for the leucine-responsive regulatory protein and integration host factor in the regulation of the Salmonella plasmid virulence (spv) locus in Salmonella typhimurium. Molecular Microbiology, 1999, 34, 134-145.	1.2	46
101	Functional analysis of the FimE integrase of Escherichia coli K-12: isolation of mutant derivatives with altered DNA inversion preferences. Molecular Microbiology, 1999, 34, 965-979.	1.2	40
102	Environmentally constrained mutation and adaptive evolution in Salmonella. Current Biology, 1999, 9, 1477-1481.	1.8	20
103	Domain organization and oligomerization among H-NS-like nucleoid-associated proteins in bacteria. Trends in Microbiology, 1999, 7, 124-128.	3.5	137
104	Two highly related regulatory proteins,Shigella flexneriVirF and enterotoxigenicEscherichia coliRns, have common and distinct regulatory properties. FEMS Microbiology Letters, 1998, 162, 303-309.	0.7	23
105	TheShigellavirulence gene regulatory cascade: a paradigm of bacterial gene control mechanisms. Molecular Microbiology, 1998, 29, 677-684.	1.2	143
106	In vivoanalysis of the interactions of the LysR-like regulator SpvR with the operator sequences of thespvAandspvRvirulence genes ofSalmonella typhimurium. Molecular Microbiology, 1998, 30, 91-105.	1.2	49
107	7.1 Introduction. Methods in Microbiology, 1998, 27, 345-347.	0.4	0
108	The StpA Protein Functions as a Molecular Adapter To Mediate Repression of the <i>bgl</i> Operon by Truncated H-NS in <i>Escherichia coli</i> . Journal of Bacteriology, 1998, 180, 994-997.	1.0	45

#	Article	IF	CITATIONS
109	Control of Escherichia coli type 1 fimbrial gene expression in stationary phase: a negative role for RpoS. Molecular Genetics and Genomics, 1997, 254, 13-20.	2.4	52
110	Differential regulation of the plasmid-encoded genes in the Shigella flexneri virulence regulon. Molecular Genetics and Genomics, 1997, 256, 93-103.	2.4	60
111	Multicopy fimB gene expression in Escherichia coli: binding to inverted repeats in vivo, effect on fimA gene transcription and DNA inversion. Molecular Microbiology, 1996, 21, 1161-1173.	1.2	28
112	Coupling of Escherichia coli hns mRNA levels to DNA synthesis by autoregulation: implications for growth phase control. Molecular Microbiology, 1995, 18, 101-113.	1.2	68
113	Overexpression of the Shigella flexneri genes coding for DNA topoisomerase IV compensates for loss of DNA topoisomerase I: effect on virulence gene expression. Molecular Microbiology, 1995, 15, 507-517.	1.2	47
114	DNA topology and the global control of bacterial gene expression: implications for the regulation of virulence gene expression. Microbiology (United Kingdom), 1995, 141, 1271-1280.	0.7	67
115	Transcription of theSalmonella typhimurium spvvirulence locus is regulated negatively by the nucleoid-associated protein H-NS. FEMS Microbiology Letters, 1994, 121, 99-105.	0.7	42
116	Role of hns in the virulence phenotype of pathogenic salmonellae. Molecular Microbiology, 1994, 13, 133-140.	1.2	56
117	Escherichia coli tyrT gene transcription is sensitive to DNA supercoiling in its native chromosomal context: effect of DNA topoisomerase IV overexpression on tyrT promoter function. Molecular Microbiology, 1994, 14, 151-161.	1.2	50
118	The site-specific recombination system regulating expression of the Type 1 fimbrial subunit gene of Escherichia coli is sensitive to changes in DNA supercoiling. Molecular Microbiology, 1994, 14, 975-988.	1.2	54
119	Isolation and characterization of a topA mutant of Shigella flexneri. Molecular Microbiology, 1993, 7, 351-358.	1.2	52
120	DNA topology and bacterial virulence gene regulation. Trends in Microbiology, 1993, 1, 92-99.	3.5	40
121	Coordination of Gene Expression in Pathogenic Salmonella typhimurium. , 1993, , 51-62.		Ο
122	Osmotic and growth-phase dependent regulation of the eta gene of Staphylococcus aureus: a role for DNA supercoiling. Molecular Genetics and Genomics, 1992, 232, 49-57.	2.4	67
123	Thermal regulation offimA, theEscherichia coligene coding for the type 1 fimbrial subunit protein. FEMS Microbiology Letters, 1992, 99, 125-130.	0.7	34
124	The DNA supercoilingâ€sensitive expression of the <i>Salmonella typhimurium his</i> operon requires the <i>his</i> attenuator and is modulated by anaerobiosis and by osmolarity. Molecular Microbiology, 1992, 6, 2467-2476.	1.2	33
125	Thermal regulation of fimA, the Escherichia coli gene coding for the type 1 fimbrial subunit protein. FEMS Microbiology Letters, 1992, 78, 125-30.	0.7	17
126	DNA supercoiling and environmental regulation of gene expression in pathogenic bacteria. Infection and Immunity, 1991, 59, 745-749.	1.0	148

#	Article	IF	CITATIONS
127	DNA supercoiling and environmental regulation of virulence gene expression in Shigella flexneri. Nature, 1990, 344, 789-792.	13.7	249
128	Chromosome rearrangements induced by recombinant coliphage λpplacMu. Gene, 1990, 94, 15-22.	1.0	2
129	Structure and function of X-Pro dipeptide repeats in the TonB proteins of Salmonella typhimurium and Escherichia coli. Journal of Molecular Biology, 1990, 216, 883-895.	2.0	104
130	TonB protein of Salmonella typhimurium. Journal of Molecular Biology, 1990, 216, 897-910.	2.0	133
131	An overlap between osmotic and anaerobic stress responses: a potential role for DNA supercoiling in the coordinate regulation of gene expression. Molecular Microbiology, 1989, 3, 933-942.	1.2	159
132	Characterization of porin and ompR mutants of a virulent strain of Salmonella typhimurium: ompR mutants are attenuated in vivo. Infection and Immunity, 1989, 57, 2136-2140.	1.0	249
133	A physiological role for DNA supercoiling in the osmotic regulation of gene expression in S. typhimurium and E. coli. Cell, 1988, 52, 569-584.	13.5	736
134	A novel genetic locus determines in vivo B-Z DNA structural transitions in Escherichia coli. Trends in Biochemical Sciences, 1988, 13, 130.	3.7	2
135	DNA supercoiling and the anaerobic and growth phase regulation of tonB gene expression. Journal of Bacteriology, 1988, 170, 2816-2826.	1.0	259
136	Fimbrial phase variation in Escherichia coli: dependence on integration host factor and homologies with other site-specific recombinases. Journal of Bacteriology, 1987, 169, 3840-3843.	1.0	179
137	Sequence-imposed structural constraints in the TonB protein ofE. coli. FEBS Letters, 1986, 208, 211-216.	1.3	92
138	Nucleotide sequence of the R26 chloramphenicol resistance determinant and identification of its gene product. Gene, 1986, 41, 349-353.	1.0	17
139	Transcription of the Salmonella typhimurium spv virulence locus is regulated negatively by the nucleoid-associated protein H-NS. , 0, .		5
140	Two highly related regulatory proteins, Shigella flexneri VirF and enterotoxigenic Escherichia coli Rns, have common and distinct regulatory properties. , 0, .		1