Harry P Warren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/527632/publications.pdf Version: 2024-02-01

		71102	110387
111	4,704	41	64
papers	4,704 citations	h-index	g-index
112 all docs	112 docs citations	112 times ranked	1665 citing authors

HADDY D WADDEN

#	Article	IF	CITATIONS
1	Solar Flare Irradiance: Observations and Physical Modeling. Astrophysical Journal, 2022, 927, 103.	4.5	7
2	Detection of Stellar-like Abundance Anomalies in the Slow Solar Wind. Astrophysical Journal Letters, 2022, 930, L10.	8.3	2
3	Constraining Global Coronal Models with Multiple Independent Observables. Astrophysical Journal, 2022, 932, 135.	4.5	12
4	Parallel Plasma Loops and the Energization of the Solar Corona. Astrophysical Journal, 2022, 933, 153.	4.5	5
5	Geometric Assumptions in Hydrodynamic Modeling of Coronal and Flaring Loops. Astrophysical Journal, 2022, 933, 106.	4.5	4
6	Measurements of Coronal Magnetic Field Strengths in Solar Active Region Loops. Astrophysical Journal Letters, 2021, 915, L24.	8.3	17
7	The Formation and Lifetime of Outflows in a Solar Active Region. Astrophysical Journal, 2021, 917, 25.	4.5	8
8	A Multicomponent Magnetic Proxy for Solar Activity. Space Weather, 2021, 19, e2021SW002860.	3.7	2
9	MinXSS-2 CubeSat mission overview: Improvements from the successful MinXSS-1 mission. Advances in Space Research, 2020, 66, 3-9.	2.6	22
10	Observation and Modeling of High-temperature Solar Active Region Emission during the High-resolution Coronal Imager Flight of 2018 May 29. Astrophysical Journal, 2020, 896, 51.	4.5	10
11	Is the High-Resolution Coronal Imager Resolving Coronal Strands? Results from AR 12712. Astrophysical Journal, 2020, 892, 134.	4.5	40
12	Simulating Solar Flare Irradiance with Multithreaded Models of Flare Arcades. Astrophysical Journal, 2020, 895, 30.	4.5	7
13	The Drivers of Active Region Outflows into the Slow Solar Wind. Astrophysical Journal, 2020, 894, 144.	4.5	19
14	Achievements of Hinode in the first eleven years. Publication of the Astronomical Society of Japan, 2019, 71, .	2.5	69
15	The Magnetic Properties of Heating Events on High-temperature Active-region Loops. Astrophysical Journal, 2019, 877, 129.	4.5	15
16	The Multi-instrument (EVE-RHESSI) DEM for Solar Flares, and Implications for Nonthermal Emission. Astrophysical Journal, 2019, 881, 161.	4.5	9
17	The Variability of Solar Coronal Abundances in Active Regions and the Quiet Sun. Astrophysical Journal, 2019, 884, 158.	4.5	11
18	Efficient Calculation of Non-local Thermodynamic Equilibrium Effects in Multithreaded Hydrodynamic Simulations of Solar Flares. Astrophysical Journal, 2019, 871, 18.	4.5	23

#	Article	IF	CITATIONS
19	Comprehensive Determination of the Hinode/EIS Roll Angle. Solar Physics, 2019, 294, 1.	2.5	2
20	Global Energetics of Solar Flares and Coronal Mass Ejections. Journal of Physics: Conference Series, 2019, 1332, 012002.	0.4	4
21	Hi-C 2.1 Observations of Jetlet-like Events at Edges of Solar Magnetic Network Lanes. Astrophysical Journal Letters, 2019, 887, L8.	8.3	30
22	Solar Active Region Heating Diagnostics from High-temperature Emission Using the MaGIXS. Astrophysical Journal, 2019, 884, 24.	4.5	11
23	Fine-scale Explosive Energy Release at Sites of Prospective Magnetic Flux Cancellation in the Core of the Solar Active Region Observed by Hi-C 2.1, IRIS, and SDO. Astrophysical Journal, 2019, 887, 56.	4.5	39
24	The High-Resolution Coronal Imager, Flight 2.1. Solar Physics, 2019, 294, 1.	2.5	44
25	Spectroscopic Observations of Current Sheet Formation and Evolution. Astrophysical Journal, 2018, 854, 122.	4.5	112
26	The Duration of Energy Deposition on Unresolved Flaring Loops in the Solar Corona. Astrophysical Journal, 2018, 856, 149.	4.5	23
27	Coronal Elemental Abundances in Solar Emerging Flux Regions. Astrophysical Journal, 2018, 856, 71.	4.5	23
28	Photospheric and Coronal Abundances in an X8.3 Class Limb Flare. Astrophysical Journal, 2018, 853, 178.	4.5	18
29	Incorporating Uncertainties in Atomic Data into the Analysis of Solar and Stellar Observations:ÂA Case Study in Fe xiii. Astrophysical Journal, 2018, 866, 146.	4.5	17
30	A Chandra/LETGS Survey of Main-sequence Stars. Astrophysical Journal, 2018, 862, 66.	4.5	39
31	Toward a Quantitative Comparison of Magnetic Field Extrapolations and Observed Coronal Loops. Astrophysical Journal, 2018, 860, 46.	4.5	14
32	Plasma Evolution within an Erupting Coronal Cavity. Astrophysical Journal, 2018, 855, 74.	4.5	25
33	Solar Cycle Observations of the Neon Abundance in the Sun-as-a-star. Astrophysical Journal, 2018, 861, 42.	4.5	2
34	On the Synthesis of GOES Light Curves from Numerical Models. Research Notes of the AAS, 2018, 2, 48.	0.7	1
35	Sparse Bayesian Inference and the Temperature Structure of the Solar Corona. Astrophysical Journal, 2017, 836, 215.	4.5	8
36	Measuring Velocities in the Early Stage of an Eruption: Using "Overlappogram―Data from Hinode EIS. Astrophysical Journal, 2017, 842, 58.	4.5	10

#	Article	IF	CITATIONS
37	Sunspots, Starspots, and Elemental Abundances. Astrophysical Journal, 2017, 844, 52.	4.5	17
38	A Solar cycle correlation of coronal element abundances in Sun-as-a-star observations. Nature Communications, 2017, 8, 183.	12.8	28
39	Linear forecasting of the <i>F</i> _{10.7} proxy for solar activity. Space Weather, 2017, 15, 1039-1051.	3.7	15
40	Modeling Coronal Response in Decaying Active Regions with Magnetic Flux Transport and Steady Heating. Astrophysical Journal, 2017, 846, 165.	4.5	12
41	Tracking the Magnetic Flux in and Around Sunspots. Astrophysical Journal, 2017, 836, 144.	4.5	6
42	Global Energetics of Solar Flares. V. Energy Closure in Flares and Coronal Mass Ejections. Astrophysical Journal, 2017, 836, 17.	4.5	107
43	THE ELECTRON DENSITY IN EXPLOSIVE TRANSITION REGION EVENTS OBSERVED BY IRIS. Astrophysical Journal, 2016, 832, 77.	4.5	13
44	PROPERTIES AND MODELING OF UNRESOLVED FINE STRUCTURE LOOPS OBSERVED IN THE SOLAR TRANSITION REGION BY IRIS. Astrophysical Journal Letters, 2016, 826, L18.	8.3	24
45	TRANSITION REGION AND CHROMOSPHERIC SIGNATURES OF IMPULSIVE HEATING EVENTS. I. OBSERVATIONS. Astrophysical Journal, 2016, 829, 35.	4.5	35
46	THE MYSTERIOUS CASE OF THE SOLAR ARGON ABUNDANCE NEAR SUNSPOTS IN FLARES. Astrophysical Journal, 2016, 825, 36.	4.5	29
47	CORRELATION OF CORONAL PLASMA PROPERTIES AND SOLAR MAGNETIC FIELD IN A DECAYING ACTIVE REGION. Astrophysical Journal, 2016, 826, 126.	4.5	14
48	CONVERGING SUPERGRANULAR FLOWS AND THE FORMATION OF CORONAL PLUMES. Astrophysical Journal, 2016, 818, 203.	4.5	18
49	MEASUREMENTS OF NON-THERMAL LINE WIDTHS IN SOLAR ACTIVE REGIONS. Astrophysical Journal, 2016, 820, 63.	4.5	54
50	TRANSITION REGION ABUNDANCE MEASUREMENTS DURING IMPULSIVE HEATING EVENTS. Astrophysical Journal, 2016, 824, 56.	4.5	22
51	TRANSITION REGION AND CHROMOSPHERIC SIGNATURES OF IMPULSIVE HEATING EVENTS. II. MODELING. Astrophysical Journal, 2016, 827, 145.	4.5	29
52	NEW OBSERVATIONS OF THE SOLAR 0.5–5 KEV SOFT X-RAY SPECTRUM. Astrophysical Journal Letters, 2015, 802, L2.	8.3	47
53	Benchmark Test of Differential Emission Measure Codes and Multi-thermal Energies in Solar Active Regions. Solar Physics, 2015, 290, 2733-2763.	2.5	31
54	MAGNETIC FLUX TRANSPORT AND THE LONG-TERM EVOLUTION OF SOLAR ACTIVE REGIONS. Astrophysical Journal, 2015, 815, 90.	4.5	34

#	Article	IF	CITATIONS
55	Full-Sun observations for identifying the source of the slow solar wind. Nature Communications, 2015, 6, 5947.	12.8	115
56	GLOBAL ENERGETICS OF SOLAR FLARES. II. THERMAL ENERGIES. Astrophysical Journal, 2015, 802, 53.	4.5	61
57	THE ABSOLUTE CALIBRATION OF THE EUV IMAGING SPECTROMETER ON <i>HINODE</i> . Astrophysical Journal, Supplement Series, 2014, 213, 11.	7.7	64
58	DETERMINING HEATING TIMESCALES IN SOLAR ACTIVE REGION CORES FROM AIA/ <i>SDO</i> Fe XVIII IMAGES. Astrophysical Journal, 2014, 783, 12.	4.5	35
59	CONSTRAINING SOLAR FLARE DIFFERENTIAL EMISSION MEASURES WITH EVE AND <i>RHESSI</i> . Astrophysical Journal Letters, 2014, 788, L31.	8.3	31
60	PLASMA DYNAMICS ABOVE SOLAR FLARE SOFT X-RAY LOOP TOPS. Astrophysical Journal, 2014, 788, 26.	4.5	38
61	MEASUREMENTS OF ABSOLUTE ABUNDANCES IN SOLAR FLARES. Astrophysical Journal Letters, 2014, 786, L2.	8.3	58
62	USING RUNNING DIFFERENCE IMAGES TO TRACK PROPER MOTIONS OF XUV CORONAL INTENSITY ON THE SUN. Astrophysical Journal, 2014, 797, 131.	4.5	9
63	Photometric and Thermal Cross-calibration of Solar EUV Instruments. Solar Physics, 2014, 289, 2377-2397.	2.5	79
64	OBSERVATIONS OF THERMAL FLARE PLASMA WITH THE EUV VARIABILITY EXPERIMENT. Astrophysical Journal, 2013, 770, 116.	4.5	35
65	HIGH SPATIAL RESOLUTION OBSERVATIONS OF LOOPS IN THE SOLAR CORONA. Astrophysical Journal Letters, 2013, 772, L19.	8.3	89
66	A SYSTEMATIC SURVEY OF HIGH-TEMPERATURE EMISSION IN SOLAR ACTIVE REGIONS. Astrophysical Journal, 2012, 759, 141.	4.5	158
67	DEFINING THE "BLIND SPOT―OF <i>HINODE</i> EIS AND XRT TEMPERATURE MEASUREMENTS. Astrophysica Journal Letters, 2012, 746, L17.	al 8.3	56
68	IS ACTIVE REGION CORE VARIABILITY AGE DEPENDENT?. Astrophysical Journal, 2012, 761, 21.	4.5	27
69	LEMUR: Large European module for solar Ultraviolet Research. Experimental Astronomy, 2012, 34, 273-309.	3.7	25
70	THE CORONAL SOURCE OF EXTREME-ULTRAVIOLET LINE PROFILE ASYMMETRIES IN SOLAR ACTIVE REGION OUTFLOWS. Astrophysical Journal Letters, 2012, 760, L5.	8.3	47
71	SOLAR CORONAL LOOPS RESOLVED BY <i>HINODE</i> AND THE <i>SOLAR DYNAMICS OBSERVATORY</i> . Astrophysical Journal Letters, 2012, 755, L33.	8.3	80
72	SPECTROSCOPIC OBSERVATIONS OF Fe XVIII IN SOLAR ACTIVE REGIONS. Astrophysical Journal Letters, 2012, 754, L40.	8.3	32

#	Article	IF	CITATIONS
73	DETERMINING THE STRUCTURE OF SOLAR CORONAL LOOPS USING THEIR EVOLUTION. Astrophysical Journal, 2011, 733, 59.	4.5	32
74	USING A DIFFERENTIAL EMISSION MEASURE AND DENSITY MEASUREMENTS IN AN ACTIVE REGION CORE TO TEST A STEADY HEATING MODEL. Astrophysical Journal, 2011, 740, 2.	4.5	99
75	CAN A LONG NANOFLARE STORM EXPLAIN THE OBSERVED EMISSION MEASURE DISTRIBUTIONS IN ACTIVE REGION CORES?. Astrophysical Journal Letters, 2011, 742, L6.	8.3	21
76	TEMPORAL VARIABILITY OF ACTIVE REGION OUTFLOWS. Astrophysical Journal, 2011, 730, 37.	4.5	41
77	THE TEMPERATURE DEPENDENCE OF SOLAR ACTIVE REGION OUTFLOWS. Astrophysical Journal, 2011, 727, 58.	4.5	60
78	ESTABLISHING A CONNECTION BETWEEN ACTIVE REGION OUTFLOWS AND THE SOLAR WIND: ABUNDANCE MEASUREMENTS WITH EIS/ <i>HINODE</i> . Astrophysical Journal Letters, 2011, 727, L13.	8.3	109
79	CONSTRAINTS ON THE HEATING OF HIGH-TEMPERATURE ACTIVE REGION LOOPS: OBSERVATIONS FROM <i>HINODE</i> AND THE <i>SOLAR DYNAMICS OBSERVATORY</i> . Astrophysical Journal, 2011, 734, 90.	4.5	100
80	MODELING EVOLVING CORONAL LOOPS WITH OBSERVATIONS FROM <i>STEREO</i> , <i>HINODE</i> , AND <i>TRACE</i> . Astrophysical Journal, 2010, 713, 1095-1107.	4.5	21
81	EVIDENCE FOR STEADY HEATING: OBSERVATIONS OF AN ACTIVE REGION CORE WITH <i>HINODE</i> AND <i>TRACE</i> . Astrophysical Journal, 2010, 711, 228-238.	4.5	64
82	FLOWS AND MOTIONS IN MOSS IN THE CORE OF A FLARING ACTIVE REGION: EVIDENCE FOR STEADY HEATING. Astrophysical Journal, 2009, 703, L10-L13.	4.5	44
83	HOT PLASMA IN NONFLARING ACTIVE REGIONS OBSERVED BY THE EXTREME-ULTRAVIOLET IMAGING SPECTROMETER ON <i>HINODE</i> . Astrophysical Journal, 2009, 697, 1956-1970.	4.5	37
84	ACTIVE REGION TRANSITION REGION LOOP POPULATIONS AND THEIR RELATIONSHIP TO THE CORONA. Astrophysical Journal, 2009, 695, 642-651.	4.5	100
85	<i>HINODE</i> /EXTREME-ULTRAVIOLET IMAGING SPECTROMETER OBSERVATIONS OF THE TEMPERATURE STRUCTURE OF THE QUIET CORONA. Astrophysical Journal, 2009, 705, 1522-1532.	4.5	52
86	THE TEMPERATURE AND DENSITY STRUCTURE OF THE SOLAR CORONA. I. OBSERVATIONS OF THE QUIET SUN WITH THE EUV IMAGING SPECTROMETER ON <i>HINODE</i>). Astrophysical Journal, 2009, 700, 762-773.	4.5	60
87	Modeling Xâ€Ray Loops and EUV "Moss―in an Active Region Core. Astrophysical Journal, 2008, 676, 672-679.	4.5	37
88	Observation and Modeling of Coronal "Moss―With the EUV Imaging Spectrometer on <i>Hinode</i> . Astrophysical Journal, 2008, 677, 1395-1400.	4.5	40
89	Observations of Active Region Loops with the EUV Imaging Spectrometer on <i>Hinode</i> . Astrophysical Journal, 2008, 686, L131-L134.	4.5	90
90	The Temperature and Density Structure of an Active Region Observed with the Extreme-Ultraviolet Imaging Spectrometer on Hinode. Publication of the Astronomical Society of Japan, 2007, 59, S707-S712.	2.5	21

#	Article	IF	CITATIONS
91	Velocity Structure of Jets in a Coronal Hole. Publication of the Astronomical Society of Japan, 2007, 59, S757-S762.	2.5	51
92	On Connecting the Dynamics of the Chromosphere and Transition Region with Hinode SOT and EIS. Publication of the Astronomical Society of Japan, 2007, 59, S699-S706.	2.5	16
93	Static and Dynamic Modeling of a Solar Active Region. Astrophysical Journal, 2007, 666, 1245-1255.	4.5	50
94	Theoretical Predictions of Xâ€Ray and Extremeâ€UV Flare Emissions Using a Lossâ€ofâ€Equilibrium Model of Solar Eruptions. Astrophysical Journal, 2007, 668, 1210-1220.	4.5	27
95	The Magnetic Topology of Coronal Mass Ejection Sources. Astrophysical Journal, 2007, 662, 1293-1301.	4.5	91
96	Multithread Hydrodynamic Modeling of a Solar Flare. Astrophysical Journal, 2006, 637, 522-530.	4.5	89
97	An Investigation into the Variability of Heating in a Solar Active Region. Astrophysical Journal, 2006, 643, 1245-1257.	4.5	60
98	Hydrostatic Modeling of the Integrated Soft Xâ€Ray and Extreme Ultraviolet Emission in Solar Active Regions. Astrophysical Journal, 2006, 645, 711-719.	4.5	66
99	The Intercalibration of SOHO EIT, CDSâ€NIS, and TRACE. Astrophysical Journal, Supplement Series, 2006, 164, 202-214.	7.7	33
100	NRLEUV 2: A new model of solar EUV irradiance variability. Advances in Space Research, 2006, 37, 359-365.	2.6	15
101	A Solar Minimum Irradiance Spectrum for Wavelengths below 1200 A. Astrophysical Journal, Supplement Series, 2005, 157, 147-173.	7.7	61
102	Reconciling Hydrodynamic Simulations with Spectroscopic Observations of Solar Flares. Astrophysical Journal, 2005, 618, L157-L160.	4.5	56
103	Cooling Active Region Loops Observed with SXT andTRACE. Astrophysical Journal, 2005, 626, 543-550.	4.5	71
104	Thermal and Nonthermal Emission in Solar Flares. Astrophysical Journal, 2004, 611, L49-L52.	4.5	32
105	Can TRACE Extreme-Ultraviolet Observations of Cooling Coronal Loops Be Used to Determine the Heating Parameters?. Astrophysical Journal, 2004, 610, L129-L132.	4.5	32
106	Evolving Active Region Loops Observed with theTransition Region and Coronal explorer. II. Timeâ€dependent Hydrodynamic Simulations. Astrophysical Journal, 2003, 593, 1174-1186.	4.5	120
107	Evolving Active Region Loops Observed with theTransition Region and Coronal Explorer. I. Observations. Astrophysical Journal, 2003, 593, 1164-1173.	4.5	102
108	Transition Region and Coronal Explorerand Soft Xâ€Ray Telescope Active Region Loop Observations: Comparisons with Static Solutions of the Hydrodynamic Equations. Astrophysical Journal, 2003, 587, 439-449.	4.5	128

#	Article	IF	CITATIONS
109	Hydrodynamic Modeling of Active Region Loops. Astrophysical Journal, 2002, 579, L41-L44.	4.5	113
110	Steady Flows Detected in Extreme-Ultraviolet Loops. Astrophysical Journal, 2002, 567, L89-L92.	4.5	125
111	Modeling the Cooling of Postflare Loops. Astrophysical Journal, 2002, 578, 590-597.	4.5	60