Malose Jack Mphahlele

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5276204/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis, in vitro and in silico enzyme (COX-1/2 & LOX-5), free radical scavenging and cytotoxicity profiling of the 2,4-dicarbo substituted quinazoline 3-oxides. Medicinal Chemistry Research, 2022, 31, 146-164.	2.4	3
2	Crystal structure of (<i>E</i>)-1-(2–nitrophenyl)-3-phenylprop-2-en-1-one, C ₁₅ H ₁₁ NO ₃ . Zeitschrift Fur Kristallographie - New Crystal Structures, 2022, .	0.3	1
3	Crystal structure of 6-bromo-2-(4-chlorophenyl)chroman-4-one (6-bromo-4′-chloroflavanone), C ₁₅ H ₁₀ BrClO ₂ . Zeitschrift Fur Kristallographie - New Crystal Structures, 2022, .	0.3	0
4	Spectroscopic, XRD, Hirshfeld surface and density functional theory (DFT) studies of the non-covalent interactions in 2-hydroxy-3-iodo-5-nitroacetophenone. Journal of Molecular Structure, 2022, 1265, 133471.	3.6	9
5	Spectroscopic, X-ray Diffraction and Density Functional Theory Study of Intra- and Intermolecular Hydrogen Bonds in Ortho-(4-tolylsulfonamido)benzamides. Molecules, 2021, 26, 926.	3.8	5
6	Synthesis, Structure and Evaluation of the N-(2-Acetyl-4-(styryl)phenyl)-4-benzenesulfonamide Derivatives for Anticholinesterase and Antioxidant Activities. Crystals, 2021, 11, 341.	2.2	4
7	In Vitro Enzymatic and Kinetic Studies, and In Silico Drug-Receptor Interactions, and Drug-Like Profiling of the 5-Styrylbenzamide Derivatives as Potential Cholinesterase and Î2-Secretase Inhibitors with Antioxidant Properties. Antioxidants, 2021, 10, 647.	5.1	5
8	Synthesis, Structure, Carbohydrate Enzyme Inhibition, Antioxidant Activity, In Silico Drug-Receptor Interactions and Drug-Like Profiling of the 5-Styryl-2-Aminochalcone Hybrids. Molecules, 2021, 26, 2692.	3.8	4
9	A combined experimental and computational structural study of the N-(2-cyanophenyl)disulfonamides derived from 5-bromo- and 5-iodoanthranilamide. Journal of Molecular Structure, 2021, 1238, 130447.	3.6	1
10	Synthesis, Structural and Biological Properties of the Ring-A Sulfonamido Substituted Chalcones: A Review. Molecules, 2021, 26, 5923.	3.8	5
11	Characterization, Hirshfeld surface analysis, DFT study and an in vitro α-glucosidase/α-amylase/radical scavenging profiling of novel 5-styryl-2-(4-tolylsulfonamido) chalcones. Journal of Molecular Structure, 2021, 1245, 131090.	3.6	5
12	Potentially tautomeric 3-arylquinolin-4(1H)-ones and their 4-anilinoquinoline derivatives: Spectroscopic, DFT and X-ray analyses. Journal of Molecular Structure, 2020, 1199, 126982.	3.6	0
13	Synthesis, crystal structure, cytotoxicity and evaluation of the 6-oxo-6H-pyrrolo[3,2,1-ij]quinoline-5-carbaldehydes for inhibitory effect against protein kinases (VEGFR-2 and EGFR) and cyclooxygenase-2 (COX-2) activities. Journal of Molecular Structure, 2020, 1222. 128907.	3.6	7
14	Synthesis of furocoumarin–stilbene hybrids as potential multifunctional drugs against multiple biochemical targets associated with Alzheimer's disease. Bioorganic Chemistry, 2020, 101, 103997.	4.1	19
15	Synthesis, In Vitro Evaluation and Molecular Docking of the 5-Acetyl-2-aryl-6-hydroxybenzo[b]furans against Multiple Targets Linked to Type 2 Diabetes. Biomolecules, 2020, 10, 418.	4.0	15
16	Synthesis, α-glucosidase inhibition and antioxidant activity of the 7-carbo–substituted 5-bromo-3-methylindazoles. Bioorganic Chemistry, 2020, 97, 103702.	4.1	21
17	Benzofuran-selenadiazole hybrids as novel α-glucosidase and cyclooxygenase-2 inhibitors with antioxidant and cytotoxic properties. Bioorganic Chemistry, 2020, 100, 103945.	4.1	26
18	Crystal structure of 1-(6-hydroxy-2-phenylbenzofuran-5-yl)ethan-1-one, C ₁₆ H ₁₂ O ₃ . Zeitschrift Fur Kristallographie - New Crystal Structures, 2020, 235, 1389-1391.	0.3	0

#	Article	IF	CITATIONS
19	Crystal structure of (2-amino-5-bromo-3-iodophenyl)(3-(4-chlorophenyl)oxiran-2-yl)methanone, C15H10BrClINO2. Zeitschrift Fur Kristallographie - New Crystal Structures, 2020, 235, 1421-1423.	0.3	О
20	Crystal structure of 8-bromo-6-oxo-2-phenyl-6 <i>H</i> -pyrrolo[3,2,1- <i>ij</i>]quinoline-5-carbaldehyde, C ₁₈ H ₁₁ BrNO ₂ . Zeitschrift Fur Kristallographie - New Crystal Structures, 2019, 234, 1063-1065.	0.3	0
21	Synthesis and Transformation of 5-Acetyl-2-aryl-6-hydroxybenzofurans into Furanoflavanone Derivatives. Synthesis, 2019, 51, 3431-3442.	2.3	4
22	Inhibitory Effects of Novel 7-Substituted 6-iodo-3-O-Flavonol Glycosides against Cholinesterases and β-secretase Activities, and Evaluation for Potential Antioxidant Properties. Molecules, 2019, 24, 3500.	3.8	3
23	Design, Synthesis, and Biological Evaluation of 4-aminoquinazoline Appended-Benzofuran Hybrids as Epidermal Growth Factor Receptor Inhibitors. Proceedings (mdpi), 2019, 22, .	0.2	ο
24	Vilsmeier–Haack reaction of 7-acetyl-2-arylindoles: a convenient method for the synthesis of 6-oxo-6 <i>H</i> -pyrrolo[3,2,1- <i>ij</i>]quinoline-1,5-dicarbaldehydes. Organic and Biomolecular Chemistry, 2019, 17, 2204-2211.	2.8	11
25	Elucidation of the Structure of the 2-amino-3,5-Dibromochalcone Epoxides in Solution and Solid State. Crystals, 2019, 9, 277.	2.2	6
26	Crystal structure of 1-(5-bromo-2-(4-methoxyphenyl)-1 <i>H</i> -indol-7-yl)ethan-1-ol, C ₁₇ H ₁₄ BrNO ₂ . Zeitschrift Fur Kristallographie - New Crystal Structures, 2019, 234, 305-307.	0.3	0
27	In Vitro Evaluation and Docking Studies of 5-oxo-5H-furo[3,2-g]chromene-6-carbaldehyde Derivatives as Potential Anti-Alzheimer's Agents. International Journal of Molecular Sciences, 2019, 20, 5451.	4.1	9
28	Crystal structure of 1-(4-chloro-2-hydroxy-5-iodophenyl)ethan-1-one, C ₈ H ₆ ClIO ₂ . Zeitschrift Fur Kristallographie - New Crystal Structures, 2019, 235, 81-83.	0.3	0
29	Exploring Biological Activity of 4-Oxo-4H-furo[2,3-h]chromene Derivatives as Potential Multi-Target-Directed Ligands Inhibiting Cholinesterases, β-Secretase, Cyclooxygenase-2, and Lipoxygenase-5/15. Biomolecules, 2019, 9, 736.	4.0	12
30	Synthesis of Heterocycle-Appended 4-Aminoquinazolines with Antiproliferative Properties and Potential to Inhibit Tyrosine Kinases. , 2019, , 307-316.		0
31	2-Amino-5-Bromo-3-lodoacetophenone and 2-Amino-5-Bromo-3-lodobenzamide as Synthons for Novel Polycarbo-Substituted Indoles and Their Annulated Derivatives. , 2018, , 391-404.		О
32	Synthesis and Evaluation of the 4-Substituted 2-Hydroxy-5-lodochalcones and Their 7-Substituted 6-lodoflavonol Derivatives for Inhibitory Effect on Cholinesterases and β-Secretase. International Journal of Molecular Sciences, 2018, 19, 4112.	4.1	15
33	Benzofuran–appended 4-aminoquinazoline hybrids as epidermal growth factor receptor tyrosine kinase inhibitors: synthesis, biological evaluation and molecular docking studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 1516-1528.	5.2	13
34	Crystal structure of 1-(5-bromo-2-(4-methoxyphenyl)-1 <i>H</i> -indol-7-yl)ethanone oxime, C ₁₇ H ₁₅ BrN ₂ O ₂ . Zeitschrift Fur Kristallographie - New Crystal Structures, 2018, 233, 889-891.	0.3	1
35	Synthesis, Evaluation for Cytotoxicity and Molecular Docking Studies of Benzo[c]furan-Chalcones for Potential to Inhibit Tubulin Polymerization and/or EGFR-Tyrosine Kinase Phosphorylation. International Journal of Molecular Sciences, 2018, 19, 2552.	4.1	31
36	Development of Graduates' Attributes in Chemistry within an Open Distance Learning (ODL) Environment: Unisa's Experience. Africa Education Review, 2018, 15, 96-111.	0.1	2

#	Article	IF	CITATIONS
37	A Study of the Crystal Structure and Hydrogen Bonding of 3-Trifluoroacetyloxime Substituted 7-Acetamido-2-aryl-5-bromoindoles. Crystals, 2018, 8, 274.	2.2	1
38	Synthesis, Evaluation of Cytotoxicity and Molecular Docking Studies of the 7-Acetamido Substituted 2-Aryl-5-bromo-3-trifluoroacetylindoles as Potential Inhibitors of Tubulin Polymerization. Pharmaceuticals, 2018, 11, 59.	3.8	10
39	Synthesis, Biological Evaluation and Molecular Docking of Novel Indole-Aminoquinazoline Hybrids for Anticancer Properties. International Journal of Molecular Sciences, 2018, 19, 2232.	4.1	26
40	Crystal structure of 1-(4-chlorophenyl)-6,8-diphenyl-1 <i>H</i> -pyrazolo[4,3- <i>c</i>]quinoline, C ₂₈ H ₁₈ ClN ₃ . Zeitschrift Fur Kristallographie - New Crystal Structures, 2017, 232, 271-272.	0.3	0
41	Crystal structure of 1-(diethoxy phosphonomethyl) 2-benzoyl-3-chloro-2-cyclohexen-1-ol, C18H24ClO5P. Zeitschrift Fur Kristallographie - New Crystal Structures, 2017, 232, 371-373.	0.3	0
42	Crystal structure of 6,8-diphenyl-2-(4-fluorophenyl)-2,3-dihydroquinolin-4(3H)-one, C27H20FNO. Zeitschrift Fur Kristallographie - New Crystal Structures, 2017, 232, 395-396.	0.3	0
43	Crystal structure of (1 <i>E</i> ,4 <i>E</i>)-1,5-bis(4-chlorophenyl)penta-1,4-dien-3-one, C ₁₇ H ₁₂ Cl ₂ O. Zeitschrift Fur Kristallographie - New Crystal Structures, 2017, 232, 1049-1050.	0.3	0
44	Spectroscopic, Electrochemical and DFT Studies of Phosphorescent Homoleptic Cyclometalated Iridium(III) Complexes Based on Substituted 4-Fluorophenylvinyl- and 4-Methoxyphenylvinylquinolines. Materials, 2017, 10, 1061.	2.9	7
45	Spectroscopic, DFT, and XRD Studies of Hydrogen Bonds in N-Unsubstituted 2-Aminobenzamides. Molecules, 2017, 22, 83.	3.8	11
46	Synthesis and Evaluation of N-(3-Trifluoroacetyl-indol-7-yl) Acetamides for Potential In Vitro Antiplasmodial Properties. Molecules, 2017, 22, 1099.	3.8	6
47	Synthesis, Cytotoxicity and Molecular Docking Studies of the 9-Substituted 5-Styryltetrazolo[1,5-c]quinazoline Derivatives. Molecules, 2017, 22, 1719.	3.8	9
48	Synthesis and In Vitro Cytotoxicity of the 4-(Halogenoanilino)-6-bromoquinazolines and Their 6-(4-Fluorophenyl) Substituted Derivatives as Potential Inhibitors of Epidermal Growth Factor Receptor Tyrosine Kinase. Pharmaceuticals, 2017, 10, 87.	3.8	12
49	Novel 2,3-Dihydro-1H-pyrrolo[3,2,1-ij]quinazolin-1-ones: Synthesis and Biological Evaluation. Molecules, 2017, 22, 55.	3.8	8
50	Synthesis, Biological Evaluation and Molecular Docking Studies of 6-Aryl-2-Styrylquinazolin-4(3H)-Ones. Molecules, 2016, 21, 28.	3.8	9
51	Synthesis and In Vitro Cytotoxic Properties of Polycarbo-Substituted 4-(Arylamino)quinazolines. Molecules, 2016, 21, 1366.	3.8	9
52	2,6,8â€Triarylâ€3â€iodoquinolinâ€4(1 <i>H</i>)â€ones as Substrates for the Synthesis of 2,3,6,8â€Tetraarylquinolinâ€4(1 <i>H</i>)â€ones and the 2â€Substituted 4,6,8â€Triarylâ€I <i>H</i> â€furo[3,2â€ <i>c</i>]quinolines. Journal of Heterocyclic Chemistry, 2016, 53, 1378-13	2.6 85.	1
53	In vitro cytotoxicity of novel 2,5,7-tricarbo-substituted indoles derived from 2-amino-5-bromo-3-iodoacetophenone. Bioorganic and Medicinal Chemistry, 2016, 24, 4576-4586.	3.0	16
54	Trifluoroacetylation of indole-chalcones derived from the 2-amino-3-(arylethynyl)-5-bromo-iodochalcones. Journal of Fluorine Chemistry, 2016, 189, 88-95.	1.7	9

#	Article	IF	CITATIONS
55	The crystal structure of 2-(4-methoxyphenyl)-6,8-diphenyl-4-(phenylamino)quinazoline — acetonitrile (1/1), C ₃₅ H ₂₈ N ₄ O. Zeitschrift Fur Kristallographie - New Crystal Structures, 2016, 231, 1237-1239.	0.3	0
56	Synthesis, photophysical properties and DFT study of novel polycarbo-substituted quinazolines derived from the 2-aryl-6-bromo-4-chloro-8-iodoquinazolines. Tetrahedron, 2016, 72, 123-133.	1.9	17
57	Novel Polycarbo-Substituted Imidazo[1,2-c]quinazolines: Synthesis and Cytotoxicity Study. Molecules, 2015, 20, 22520-22533.	3.8	8
58	Synthesis and Photophysical Properties of Polycarbo-Substituted Quinazolines Derived from the 2-Aryl-4-chloro-6-iodoquinazolines. Molecules, 2015, 20, 14656-14683.	3.8	13
59	Chemistry post-graduate student training from an open distance learning perspective. Africa Education Review, 2015, 12, 345-360.	0.1	Ο
60	Reactivity of the 2-aryl-6,8-dibromo-2,3-dihydroquinolin-4(1\$H)\$-ones in a palladium catalyzed Sonogashira cross-coupling reaction. Turkish Journal of Chemistry, 2015, 39, 1216-1231.	1.2	1
61	Synthesis and Photophysical Property Studies of the 2,6,8-Triaryl-4-(phenylethynyl)quinazolines. Molecules, 2014, 19, 795-818.	3.8	26
62	Novel Polycarbo-Substituted Alkyl (Thieno[3,2-c]quinoline)-2-Carboxylates: Synthesis and Cytotoxicity Studies. Molecules, 2014, 19, 18527-18542.	3.8	6
63	2,4-Diarylquinolines: Synthesis, Absorption and Emission Properties. Journal of Chemical Research, 2014, 38, 254-259.	1.3	6
64	2-Aryl-6,8-dibromo-2,3-dihydroquinazolin-4(1 <i>H</i>)-ones as substrates for the synthesis of 2,6,8-triarylquinazolin-4-ones. Bulletin of the Chemical Society of Ethiopia, 2014, 28, 81.	1.1	11
65	One-Pot Site-Selective Sonogashira Cross-Coupling–Heteroannulation of the 2-Aryl-6,8-Dibromoquinolin-4(1H)-Ones: Synthesis of Novel 6-H-Pyrrolo[3,2,1-ij]Quinolin-6-Ones. Journal of Chemical Research, 2014, 38, 535-538.	1.3	4
66	Advances in Metal-Catalyzed Cross-Coupling Reactions of Halogenated Quinazolinones and Their Quinazoline Derivatives. Molecules, 2014, 19, 17435-17463.	3.8	27
67	Synthesis and Photophysical Properties of the 2-(3-(2-Alkyl-6,8-diaryl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)propyl)-6,8-diarylquinazolin-4(3H)-ones. Molecules, 2014, 19, 9712-9735.	3.8	4
68	6,8-Dibromo-4-chloroquinoline-3-carbaldehyde as a synthon in the development of novel 1,6,8-triaryl-1H-pyrazolo[4,3-c]quinolines. Tetrahedron, 2013, 69, 699-704.	1.9	17
69	Halogenated Quinolines as Substrates for the Palladiumâ€Catalyzed Crossâ€Coupling Reactions to Afford Substituted Quinolines. Journal of Heterocyclic Chemistry, 2013, 50, 1-16.	2.6	33
70	Synthesis, Characterization and Solvent Effects on the Electronic Absorption Spectra of Aminopyridine Schiff Bases. Asian Journal of Chemistry, 2013, 25, 8505-8508.	0.3	8
71	4,6,8-Triarylquinoline-3-carbaldehyde Derivatives: Synthesis and Photophysical Properties. Molecules, 2013, 18, 15769-15787.	3.8	7
72	Synthesis and Photophysical Properties of 2-Aryl-6,8-bis(arylethenyl)-4-methoxyquinolines. Molecules, 2012. 17. 14186-14204.	3.8	10

#	Article	IF	CITATIONS
73	Direct One-Pot Synthesis of Primary 4-Amino-2,3-diaryl-quinolines via Suzuki-Miyaura Cross-Coupling of 2-Aryl-4-azido-3-iodoquinolines with Arylboronic Acids. Molecules, 2011, 16, 8958-8972.	3.8	2
74	One-pot palladium-catalyzed C–I and C–H bond activation and subsequent Suzuki–Miyaura cross-coupling of 2-aryl-3-iodo-4-(phenylamino)quinolines with arylboronic acids. Tetrahedron, 2011, 67, 4689-4695.	1.9	6
75	Suzuki–Miyaura cross-coupling of 2-aryl-6,8-dibromo-1,2,3,4-tetrahydroquinolin-4-ones and subsequent dehydrogenation and oxidative aromatization of the resulting 2,6,8-triaryl-1,2,3,4-tetrahydroquinolin-4-ones. Tetrahedron, 2011, 67, 6819-6825.	1.9	11
76	One-Pot Synthesis of 2,3,4-Triarylquinolines via Suzuki-Miyaura Cross-Coupling of 2-Aryl-4-chloro-3-iodoquinolines with Arylboronic Acids. Molecules, 2010, 15, 7423-7437.	3.8	10
77	Regioselective alkynylation of 2-aryl-4-chloro-3-iodoquinolines and subsequent arylation or amination of the 2-aryl-3-(alkynyl)-4-chloroquinolines. Tetrahedron, 2010, 66, 8261-8266.	1.9	20
78	Synthesis of 2â€arylquinolinâ€4(1 <i>H</i>)â€ones and their transformation to <i>N</i> â€alkylated and <i>O</i> â€alkylated derivatives. Journal of Heterocyclic Chemistry, 2010, 47, 1-14.	2.6	6
79	Synthesis of 1H-pyrrolo[3,2-c]quinoline derivatives via palladium-catalyzed heteroannulation of 2-aryl-3-iodo-4-(phenylamino)quinolines and 4-(N,N-allylphenylamino)-2-aryl-3-iodoquinolines. Tetrahedron, 2010, 66, 6040-6046.	1.9	18
80	Molecular Iodine-Mediated α-Iodination of Carbonyl Compounds. Journal of Chemical Research, 2010, 34, 121-126.	1.3	8
81	Molecular Iodine-Mediated Cyclization of Tethered Heteroatom-Containing Alkenyl or Alkynyl Systems. Molecules, 2009, 14, 4814-4837.	3.8	127
82	Molecular Iodine—An Expedient Reagent for Oxidative Aromatization Reactions of α,β-Unsaturated Cyclic Compounds. Molecules, 2009, 14, 5308-5322.	3.8	49
83	Evaluation of the Antiangiogenic Effects of 2-Aryl-3-bromoquinolin-4(1H)-ones and a NCH3-4-oxo Derivative. Biological and Pharmaceutical Bulletin, 2009, 32, 937-940.	1.4	2
84	2â€Arylâ€4â€azidoâ€3â€(bromo/iodo)quinolines as substrates for the synthesis of primary 4â€aminoâ€2,3â€disubstituted quinoline derivatives. Journal of Heterocyclic Chemistry, 2008, 45, 1343-1350.	2.6	7
85	2-Aryl-4-chloro-3-iodoquinolines as Substrates for the Synthesis of 2,3-diaryl-4-methoxyquinolines. Journal of Chemical Research, 2008, 2008, 437-440.	1.3	13
86	Synthesis and Chemical Transformation of 2-iodomethyl-1-(phenylmethyl)-1,5,6,7-tetrahydroindol-4-ones. Journal of Chemical Research, 2008, 2008, 227-231.	1.3	3
87	Synthesis and further studies of chemical transformation of the 2-aryl-3-halogenoquinolin-4(1 <i>H</i>)-one derivatives. Journal of Heterocyclic Chemistry, 2006, 43, 255-260.	2.6	25
88	Synthesis and chemical transformation of fused tetrazoles derived from 2â€bromomethyl―and 2â€iodomethylâ€3,5,6,7â€tetrahydroâ€4(2 <i>H</i>)â€benzofuranones. Journal of Heterocyclic Chemistry, 2006, 905-911.	426	3
89	lodo- and Bromo-enolcyclization of 2-(2-Propenyl)cyclohexanediones and 2-(2-Propenyl)cyclohexenone Derivatives Using Iodine in Methanol and Pyridinium Hydrobromide Perbromide in Dichloromethane ChemInform, 2005, 36, no.	0.0	0
90	lodo- and bromo-enolcyclization of 2-(2-propenyl)cyclohexanediones and 2-(2-propenyl)cyclohexenone derivatives using iodine in methanol and pyridinium hydrobromide perbromide in dichloromethane. Organic and Biomolecular Chemistry, 2005, 3, 2469.	2.8	29

#	Article	IF	CITATIONS
91	Tautomeric 2-arylquinolin-4(1H)-one derivatives- spectroscopic, X-ray and quantum chemical structural studies. Journal of Molecular Structure, 2004, 688, 129-136.	3.6	37
92	Conformational studies of potentially tautomeric 2-phenyl- and 3-phenyl-1,4-benzoxazepin-5(4H)-one derivatives. Computational and Theoretical Chemistry, 2004, 668, 157-162.	1.5	4
93	Spectroscopic and quantum chemical studies on the structure of 2-arylquinoline-4(1H)-thione derivatives. Journal of Molecular Structure, 2004, 690, 151-157.	3.6	11
94	Solution phase, solid state and computational structural studies of the 2-aryl-3-bromoquinolin-4(1H)-one derivatives1. Perkin Transactions II RSC, 2002, , 2159-2164.	1.1	14
95	Benzodiazepine analogues. Part 19.1H and13C NMR spectroscopic studies of 2-phenyl-1,4- and 1,5-benzoheterazepinethione derivatives. Magnetic Resonance in Chemistry, 2000, 38, 207-209.	1.9	4
96	UNPRECEDENTED OUTCOME OF BASE-PROMOTED NEBER REARRANGEMENT OF O-MESYLOXIME OF 2-ARYL-1,2,3,4-TETRAHYDRO-1-METHYLSUL FONYL-4-QUINOLONE- SYNTHESIS OF 4-AMINO-2-ARYLQUINOLINES. Phosphorus, Sulfur and Silicon and the Related Elements, 2000, 166, 303-314.	1.6	8
97	Iodine-Methanol-promoted Oxidation of 2-Aryl-1,2,3,4-tetrahydro-4-quinolones to 2-Aryl-4-methoxyquinolines. Journal of Chemical Research, 1999, 23, 706-707.	1.3	Ο
98	Synthesis of Nitrogen-Containing 3-Phosphonoalkylcyclohexenones. Phosphorus, Sulfur and Silicon and the Related Elements, 1999, 144, 351-354.	1.6	5
99	Iodine–Methanol-promoted Oxidation of 2-Aryl-1,2,3,4-tetrahydro-4-quinolones to 2-Aryl-4-methoxyquinolines. Journal of Chemical Research Synopses, 1999, , 706-707.	0.3	22
100	Reaction of carbanions generated from arylmethylphosphonates with cyclic enones. Regio- and stereoselectivity of addition. Canadian Journal of Chemistry, 1998, 76, 1344-1351.	1.1	3
101	NEBER REARRANGEMENT OF O-MESYLOXIME DERIV ATIVES OF THE RING AND SIDE CHAIN SUBSTITUTED 3-PHOSPHONOMETHYLCYCLOHEXENONES. Phosphorus, Sulfur and Silicon and the Related Elements, 1997, 127, 131-142.	1.6	13
102	Reaction of carbanions generated from allylic phosphonates with β-substituted cyclic enones. Journal of the Chemical Society Perkin Transactions 1, 1996, , 2261-2264.	0.9	4
103	Reaction of phosphorus-stabilized carbanions with cyclic enones. Aromatization of the substitution and addition products. Journal of the Chemical Society Perkin Transactions II, 1996, , 1455.	0.9	15
104	REACTION OF RING AND SIDE CHAIN SUBSTITUTED 3-PHOSPHONOMETHYLCYCLOHEXENONES WITH AZIDOSILANE REAGENTS. Phosphorus, Sulfur and Silicon and the Related Elements, 1996, 118, 145-154.	1.6	5
105	The Reactions of Phosphoryl - Stabilized Carbanions with α,β-Unsaturated Cycloalkenones Derivatives. Phosphorus, Sulfur and Silicon and the Related Elements, 1996, 111, 147-147.	1.6	Ο
106	Reaction of Phosphonate-Stabilized Carbanions with Cyclic Enones Bearing a .betaLeaving Group. Journal of Organic Chemistry, 1995, 60, 8236-8240.	3.2	28
107	Benzodiazepine Analogues. Part 8. ¹ Trimethylsilyl Azide Mediated Schmidt Rearrangement of Thioflavanone and Thiochromanone Precursors. Synthetic Communications, 1995, 25, 1495-1509.	2.1	25
108	PHOSPHONIC SYSTEMS. 7. REACTIONS OF 2,3-EPOXYPHOSPHONATES WITH NUCLEOPHILES: PREPARATION OF 2,3-DISUBSTITUTED ALKYLPHOSPHONIC ESTERS AND RELATED SYSTEMS. Phosphorus, Sulfur and Silicon and the Related Elements, 1992, 71, 165-174.	1.6	8