Yue Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5275871/publications.pdf

Version: 2024-02-01

20	668	567281	⁷⁹⁴⁵⁹⁴
20			
papers	citations	h-index	g-index
20	20	20	513
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Ultrahigh-Quality Infrared Polaritonic Resonators Based on Bottom-Up-Synthesized van der Waals Nanoribbons. ACS Nano, 2022, 16, 3027-3035.	14.6	20
2	Ultrahigh quality van der Waals hyperbolic polariton resonators. , 2022, , .		0
3	Effect of doping TiO ₂ with Mn for electrocatalytic oxidation in acid and alkaline electrolytes. Energy Advances, 2022, 1, 357-366.	3.3	4
4	Effect of Fluoroalkylsilane Surface Functionalization on Boron Combustion. ACS Applied Materials & Lamp; Interfaces, 2022, 14, 20190-20196.	8.0	18
5	Ignition and combustion of Perfluoroalkyl-functionalized aluminum nanoparticles and nanothermite. Combustion and Flame, 2022, 242, 112170.	5. 2	18
6	Efficient and Stable Acidic Water Oxidation Enabled by Low-Concentration, High-Valence Iridium Sites. ACS Energy Letters, 2022, 7, 2228-2235.	17.4	25
7	High thermoelectric figure of merit of porous Si nanowires from 300 to 700 K. Nature Communications, 2021, 12, 3926.	12.8	26
8	Enhancing Mechanical and Combustion Performance of Boron/Polymer Composites via Boron Particle Functionalization. ACS Applied Materials & Interfaces, 2021, 13, 28908-28915.	8.0	29
9	Probing boron thermite energy release at rapid heating rates. Combustion and Flame, 2021, 231, 111491.	5. 2	20
10	Facilitating laser ignition and combustion of boron with a mixture of graphene oxide and graphite fluoride. Applications in Energy and Combustion Science, 2020, 1-4, 100013.	1.5	9
11	Ultrahigh Doping of Graphene Using Flame-Deposited MoO ₃ . IEEE Electron Device Letters, 2020, 41, 1592-1595.	3.9	11
12	On-demand production of hydrogen by reacting porous silicon nanowires with water. Nano Research, 2020, 13, 1459-1464.	10.4	14
13	Enhancing combustion performance of nano-Al/PVDF composites with \hat{I}^2 -PVDF. Combustion and Flame, 2020, 219, 467-477.	5.2	55
14	Synergistically Chemical and Thermal Coupling between Graphene Oxide and Graphene Fluoride for Enhancing Aluminum Combustion. ACS Applied Materials & Interfaces, 2020, 12, 7451-7458.	8.0	52
15	Experimental effective metal oxides to enhance boron combustion. Combustion and Flame, 2019, 205, 278-285.	5. 2	51
16	Modified Microâ€Emulsion Synthesis of Highly Dispersed Al/PVDF Composites with Enhanced Combustion Properties. Advanced Engineering Materials, 2019, 21, 1801330.	3.5	28
17	Enhanced interfacial bonding and mechanical properties in CNT/Al composites fabricated by flake powder metallurgy. Carbon, 2018, 130, 333-339.	10.3	129
18	Energetic Performance of Optically Activated Aluminum/Graphene Oxide Composites. ACS Nano, 2018, 12, 11366-11375.	14.6	99

YUE JIANG

#	Article	IF	CITATIONS
19	Tuning the morphological, ignition and combustion properties of micron-Al/CuO thermites through different synthesis approaches. Combustion and Flame, 2018, 195, 303-310.	5.2	36
20	Electroless Deposition and Ignition Properties of Si/Fe ₂ O ₃ Core/Shell Nanothermites. ACS Omega, 2017, 2, 3596-3600.	3.5	24