Matthew A Mulvey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5275330/publications.pdf

Version: 2024-02-01

101496 138417 5,781 82 36 58 citations g-index h-index papers 114 114 114 5523 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Establishment of a Persistent Escherichia coli Reservoir during the Acute Phase of a Bladder Infection. Infection and Immunity, 2001, 69, 4572-4579.	1.0	706
2	Origins and virulence mechanisms of uropathogenic Escherichia coli. Experimental and Molecular Pathology, 2008, 85, 11-19.	0.9	493
3	Bad bugs and beleaguered bladders: Interplay between uropathogenic Escherichia coli and innate host defenses. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 8829-8835.	3.3	432
4	Adhesion and entry of uropathogenic Escherichia coli. Cellular Microbiology, 2002, 4, 257-271.	1.1	321
5	Persistence of Uropathogenic <i>Escherichia coli</i> in the Face of Multiple Antibiotics. Antimicrobial Agents and Chemotherapy, 2010, 54, 1855-1863.	1.4	294
6	Integrin-Mediated Host Cell Invasion by Type 1–Piliated Uropathogenic Escherichia coli. PLoS Pathogens, 2007, 3, e100.	2.1	265
7	Bacterial Invasion Augments Epithelial Cytokine Responses to <i>Escherichia coli</i> Through a Lipopolysaccharide-Dependent Mechanism. Journal of Immunology, 2001, 166, 1148-1155.	0.4	226
8	Urinary Tract Infections: Current and Emerging Management Strategies. Clinical Infectious Diseases, 2013, 57, 719-724.	2.9	202
9	Bacterial pili: molecular mechanisms of pathogenesis. Current Opinion in Microbiology, 2000, 3, 65-72.	2.3	189
10	Molecular Regulation of Urothelial Renewal and Host Defenses during Infection with Uropathogenic Escherichia coli. Journal of Biological Chemistry, 2002, 277, 7412-7419.	1.6	179
11	Toxin-Antitoxin Systems Are Important for Niche-Specific Colonization and Stress Resistance of Uropathogenic Escherichia coli. PLoS Pathogens, 2012, 8, e1002954.	2.1	175
12	The UPEC Pore-Forming Toxin \hat{l}_{\pm} -Hemolysin Triggers Proteolysis of Host Proteins to Disrupt Cell Adhesion, Inflammatory, and Survival Pathways. Cell Host and Microbe, 2012, 11, 58-69.	5.1	148
13	Covert Operations of Uropathogenic Escherichia coli within the Urinary Tract. Traffic, 2005, 6, 18-31.	1.3	144
14	Impact of the RNA Chaperone Hfq on the Fitness and Virulence Potential of Uropathogenic <i>Escherichia coli</i> . Infection and Immunity, 2008, 76, 3019-3026.	1.0	142
15	CD14- and Toll-Like Receptor-Dependent Activation of Bladder Epithelial Cells by Lipopolysaccharide and Type 1 Piliated Escherichia coli. Infection and Immunity, 2003, 71, 1470-1480.	1.0	136
16	Actin-gated intracellular growth and resurgence of uropathogenic Escherichia coli. Cellular Microbiology, 2006, 8, 704-717.	1.1	119
17	Inactivation of Host Akt/Protein Kinase B Signaling by Bacterial Pore-forming Toxins. Molecular Biology of the Cell, 2008, 19, 1427-1438.	0.9	92
18	Dynamic interactions between host and pathogen during acute urinary tract infections. Urology, 2001, 57, 56-61.	0.5	78

#	Article	IF	CITATIONS
19	Population dynamics of an Escherichia coli ST131 lineage during recurrent urinary tract infection. Nature Communications, 2019, 10, 3643.	5.8	76
20	The RTX pore-forming toxin \hat{l}_{\pm} -hemolysin of uropathogenic <i>Escherichia coli</i> : progress and perspectives. Future Microbiology, 2013, 8, 73-84.	1.0	75
21	Clathrin, AP-2, and the NPXY-binding subset of alternate endocytic adaptors facilitate FimH-mediated bacterial invasion of host cells. Cellular Microbiology, 2008, 10, 2553-2567.	1.1	72
22	Use of Zebrafish to Probe the Divergent Virulence Potentials and Toxin Requirements of Extraintestinal Pathogenic Escherichia coli. PLoS Pathogens, 2009, 5, e1000697.	2.1	72
23	The Cpx Stress Response System Potentiates the Fitness and Virulence of Uropathogenic Escherichia coli. Infection and Immunity, 2013, 81, 1450-1459.	1.0	69
24	Forced Resurgence and Targeting of Intracellular Uropathogenic Escherichia coli Reservoirs. PLoS ONE, 2014, 9, e93327.	1.1	58
25	Invasion of Host Cells and Tissues by Uropathogenic Bacteria. Microbiology Spectrum, 2016, 4, .	1.2	58
26	The Repeat-In-Toxin Family Member TosA Mediates Adherence of Uropathogenic Escherichia coli and Survival during Bacteremia. Infection and Immunity, 2012, 80, 493-505.	1.0	57
27	Bacterial landlines: contact-dependent signaling in bacterial populations. Current Opinion in Microbiology, 2009, 12, 177-181.	2.3	53
28	Bacteria differentially induce degradation of Bcl-xL, a survival protein, by human platelets. Blood, 2012, 120, 5014-5020.	0.6	53
29	High-throughput identification and rational design of synergistic small-molecule pairs for combating and bypassing antibiotic resistance. PLoS Biology, 2017, 15, e2001644.	2.6	53
30	Assembly of the Sindbis Virus Spike Protein Complex. Virology, 1996, 219, 125-132.	1.1	52
31	Polyamine-Mediated Resistance of Uropathogenic Escherichia coli to Nitrosative Stress. Journal of Bacteriology, 2006, 188, 928-933.	1.0	52
32	Roles of Putative Type II Secretion and Type IV Pilus Systems in the Virulence of Uropathogenic Escherichia coli. PLoS ONE, 2009, 4, e4752.	1.1	51
33	Strengths and Limitations of Model Systems for the Study of Urinary Tract Infections and Related Pathologies. Microbiology and Molecular Biology Reviews, 2016, 80, 351-367.	2.9	50
34	Adenylate Cyclase and the Cyclic AMP Receptor Protein Modulate Stress Resistance and Virulence Capacity of Uropathogenic Escherichia coli. Infection and Immunity, 2013, 81, 249-258.	1.0	48
35	Uropathogenic Escherichia coli Invades Host Cells via an HDAC6-modulated Microtubule-dependent Pathway. Journal of Biological Chemistry, 2009, 284, 446-454.	1.6	45
36	Conditioning of Uropathogenic <i>Escherichia coli</i> for Enhanced Colonization of Host. Infection and Immunity, 2009, 77, 2104-2112.	1.0	40

#	Article	IF	CITATIONS
37	Combining Quantitative Genetic Footprinting and Trait Enrichment Analysis to Identify Fitness Determinants of a Bacterial Pathogen. PLoS Genetics, 2013, 9, e1003716.	1.5	39
38	Context-Dependent Requirements for FimH and Other Canonical Virulence Factors in Gut Colonization by Extraintestinal Pathogenic Escherichia coli. Infection and Immunity, 2018, 86, .	1.0	25
39	Similarly Lethal Strains of Extraintestinal Pathogenic Escherichia coli Trigger Markedly Diverse Host Responses in a Zebrafish Model of Sepsis. MSphere, 2016, 1 , .	1.3	22
40	Mucosal-associated invariant T (MAIT) cells mediate protective host responses in sepsis. ELife, 2020, 9, .	2.8	22
41	A Phyletically Rare Gene Promotes the Niche-specific Fitness of an E. coli Pathogen during Bacteremia. PLoS Pathogens, 2013, 9, e1003175.	2.1	21
42	Repeated treatments with chitosan in combination with antibiotics completely eradicate uropathogenic <i>Escherichia coli</i> from infected mouse urinary bladders. Journal of Infectious Diseases, 2017, 216, jix023.	1.9	20
43	Clinical and molecular epidemiology of invasive Staphylococcus aureus infection in Utah children; continued dominance of MSSA over MRSA. PLoS ONE, 2020, 15, e0238991.	1.1	20
44	The Extraintestinal Pathogenic Escherichia coli Factor Rqll Constrains the Genotoxic Effects of the RecQ-Like Helicase RqlH. PLoS Pathogens, 2015, 11, e1005317.	2.1	20
45	The Rhomboid Protease GlpG Promotes the Persistence of Extraintestinal Pathogenic Escherichia coli within the Gut. Infection and Immunity, 2017, 85, .	1.0	19
46	Dual colorimetric and fluorogenic probes for visualizing tyrosine phosphatase activity. Chemical Communications, 2017, 53, 2233-2236.	2.2	18
47	Lysosomal iron recycling in mouse macrophages is dependent upon both LcytB and Steap3 reductases. Blood Advances, 2022, 6, 1692-1707.	2.5	18
48	Uropathogenic Escherichia coli Induces Serum Amyloid A in Mice following Urinary Tract and Systemic Inoculation. PLoS ONE, 2012, 7, e32933.	1.1	16
49	Proteus mirabilisand Urinary Tract Infections. , 2016, , 383-433.		13
50	Flushing bacteria out of the bladder. Nature Medicine, 2007, 13, 531-532.	15.2	12
51	Escherichia coli 078 isolated from septicemic lambs shows high pathogenicity in a zebrafish model. Veterinary Research, 2017, 48, 3.	1.1	12
52	Contact-dependent inhibition: bacterial brakes and secret handshakes. Trends in Microbiology, 2006, 14, 58-60.	3.5	11
53	Gram-Positive Uropathogens, Polymicrobial Urinary Tract Infection, and the Emerging Microbiota of the Urinary Tract., 0,, 459-502.		9
54	Virulence and Fitness Determinants of Uropathogenic <i>Escherichia coli</i> ., 0, , 235-261.		8

#	Article	IF	CITATIONS
55	Clinical Presentations and Epidemiology of Urinary Tract Infections. , 0, , 27-40.		8
56	A tRNA modifying enzyme as a tunable regulatory nexus for bacterial stress responses and virulence. Nucleic Acids Research, 2022, 50, 7570-7590.	6.5	8
57	Epidemiology and Virulence of <i>Klebsiella pneumoniae</i> ., 0, , 435-457.		7
58	Bile Salts Regulate Zinc Uptake and Capsule Synthesis in a Mastitis-Associated Extraintestinal Pathogenic Escherichia coli Strain. Infection and Immunity, 2021, 89, e0035721.	1.0	7
59	Histone Deacetylase 6 Regulates Bladder Architecture and Host Susceptibility to Uropathogenic Escherichia coli. Pathogens, 2016, 5, 20.	1.2	6
60	Drug and Vaccine Development for the Treatment and Prevention of Urinary Tract Infections. , 0, , 589-646.		6
61	Ucl fimbriae regulation and glycan receptor specificity contribute to gut colonisation by extra-intestinal pathogenic Escherichia coli. PLoS Pathogens, 2022, 18, e1010582.	2.1	6
62	The Vaginal Microbiota and Urinary Tract Infection. , 0, , 79-86.		5
63	Reply to Kaye and Sobel. Clinical Infectious Diseases, 2014, 58, 444-445.	2.9	4
64	Anatomy and Physiology of the Urinary Tract: Relation to Host Defense and Microbial Infection. , 0, , 1-25.		3
65	Reservoirs of Extraintestinal Pathogenic < i>Escherichia coli < /i>. , 0, , 159-177.		3
66	Jekyll and Hyde: Bugs with Double Personalities that Muddle the Distinction between Commensal and Pathogen. Journal of Molecular Biology, 2019, 431, 2911-2913.	2.0	3
67	The Cdkn2a gene product p19 alternative reading frame (p19ARF) is a critical regulator of IFN \hat{I}^2 -mediated Lyme arthritis. PLoS Pathogens, 2022, 18, e1010365.	2.1	3
68	Urosepsis: Overview of the Diagnostic and Treatment Challenges. , 2016, , 135-157.		2
69	Diagnosis, Treatment, and Prevention of Urinary Tract Infection. , 0, , 41-68.		2
70	Origin and Dissemination of Antimicrobial Resistance among Uropathogenic < i>Escherichia coli < /i>. , 0, , 179-205.		1
71	Invasion of Host Cells and Tissues by Uropathogenic Bacteria. , 0, , 359-381.		1
72	Population Phylogenomics of Extraintestinal Pathogenic <i>Escherichia coli</i> , 0, , 207-233.		1

#	Article	IF	CITATIONS
73	Host Responses to Urinary Tract Infections and Emerging Therapeutics: Sensation and Pain within the Urinary Tract., 2016 , $565-588$.		1
74	Urinary Tract Infections in Infants and Children. , 0, , 69-77.		1
75	Structure, Function, and Assembly of Adhesive Organelles by Uropathogenic Bacteria., 0,, 277-329.		1
76	Integrated Pathophysiology of Pyelonephritis. , 2016, , 503-522.		0
77	Asymptomatic Bacteriuria and Bacterial Interference. , 2016, , 87-120.		O
78	Pathoadaptive Mutations in Uropathogenic Escherichia coli., 2016,, 331-357.		0
79	Innate Immune Responses to Bladder Infection. , 2016, , 555-564.		O
80	UropathogenicEscherichia coli-Associated Exotoxins. , 2016, , 263-276.		0
81	Susceptibility to Urinary Tract Infection: Benefits and Hazards of the Antibacterial Host Response. , $2016, , 523-554.$		O
82	Commensal Strains of Neisseria Use DNA to Poison Their Pathogenic Rivals. Cell Host and Microbe, 2019, 26, 156-158.	5.1	0