
Bruno Grignard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5275132/publications.pdf Version: 2024-02-01

RDUNO CDICNADO

#	Article	IF	CITATIONS
1	Advances in the use of CO ₂ as a renewable feedstock for the synthesis of polymers. Chemical Society Reviews, 2019, 48, 4466-4514.	18.7	438
2	Metal-Free Strategies for the Synthesis of Functional and Well-Defined Polyphosphoesters. Macromolecules, 2012, 45, 4476-4486.	2.2	121
3	CO ₂ ‣ourced αâ€Alkylidene Cyclic Carbonates: A Step Forward in the Quest for Functional Regioregular Poly(urethane)s and Poly(carbonate)s. Angewandte Chemie - International Edition, 2017, 56, 10394-10398.	7.2	109
4	Fluorinated Alcohols as Activators for the Solventâ€Free Chemical Fixation of Carbon Dioxide into Epoxides. ChemSusChem, 2015, 8, 1845-1849.	3.6	102
5	Electrospinning of a Functional Perfluorinated Block Copolymer as a Powerful Route for Imparting Superhydrophobicity and Corrosion Resistance to Aluminum Substrates. Langmuir, 2011, 27, 335-342.	1.6	90
6	Structure and Properties of a Semifluorinated Diblock Copolymer Modified Epoxy Blend. Macromolecules, 2007, 40, 4068-4074.	2.2	88
7	Catechol Containing Polyhydroxyurethanes as High-Performance Coatings and Adhesives. ACS Sustainable Chemistry and Engineering, 2018, 6, 14936-14944.	3.2	65
8	Bio-based poly(hydroxyurethane) glues for metal substrates. Polymer Chemistry, 2018, 9, 2650-2659.	1.9	63
9	Chemo―and Regioselective Additions of Nucleophiles to Cyclic Carbonates for the Preparation of Selfâ€Blowing Nonâ€Isocyanate Polyurethane Foams. Angewandte Chemie - International Edition, 2020, 59, 17033-17041.	7.2	60
10	Poly(hydroxyurethane) Adhesives and Coatings: State-of-the-Art and Future Directions. ACS Sustainable Chemistry and Engineering, 2021, 9, 9541-9562.	3.2	60
11	Dispersion Atom Transfer Radical Polymerization of Vinyl Monomers in Supercritical Carbon Dioxide. Macromolecules, 2008, 41, 8575-8583.	2.2	50
12	Organocatalytic Coupling of CO ₂ with Oxetane. ChemSusChem, 2017, 10, 1128-1138.	3.6	45
13	Superhydrophobic Aluminum Surfaces by Deposition of Micelles of Fluorinated Block Copolymers. Langmuir, 2010, 26, 2057-2067.	1.6	42
14	Self-foaming polymers: Opportunities for the next generation of personal protective equipment. Materials Science and Engineering Reports, 2021, 145, 100628.	14.8	42
15	Exovinylene Cyclic Carbonates: Multifaceted CO ₂ â€Based Building Blocks for Modern Chemistry and Polymer Science. Angewandte Chemie - International Edition, 2022, 61, .	7.2	39
16	Boosting the Catalytic Performance of Organic Salts for the Fast and Selective Synthesis of αâ€Alkylidene Cyclic Carbonates from Carbon Dioxide and Propargylic Alcohols. ChemCatChem, 2018, 10, 2584-2592.	1.8	38
17	Atom transfer radical polymerization of MMA with a macromolecular ligand in a fluorinated solvent and in supercritical carbon dioxide. European Polymer Journal, 2008, 44, 861-871.	2.6	36
18	Influence of the Cyclic versus Linear Carbonate Segments in the Properties and Performance of CO ₂ -Sourced Polymer Electrolytes for Lithium Batteries. ACS Applied Polymer Materials, 2020, 2, 922-931.	2.0	36

BRUNO GRIGNARD

#	Article	IF	CITATIONS
19	Monocomponent Non-isocyanate Polyurethane Adhesives Based on a Sol–Gel Process. ACS Applied Polymer Materials, 2020, 2, 1839-1847.	2.0	35
20	Gold Nanorods with Phaseâ€Changing Polymer Corona for Remotely Nearâ€Infraredâ€Triggered Drug Release. Chemistry - an Asian Journal, 2014, 9, 275-288.	1.7	34
21	Tetrabutylammonium Salts: Cheap Catalysts for the Facile and Selective Synthesis of αâ€Alkylidene Cyclic Carbonates from Carbon Dioxide and Alkynols. ChemCatChem, 2018, 10, 956-960.	1.8	33
22	Divergent Aminolysis Approach for Constructing Recyclable Self-Blown Nonisocyanate Polyurethane Foams. ACS Macro Letters, 2022, 11, 236-242.	2.3	33
23	Organocatalytic Coupling of CO ₂ with a Propargylic Alcohol: A Comprehensive Mechanistic Study. ChemSusChem, 2017, 10, 1241-1248.	3.6	32
24	A supercritical fluid technology for liposome production and comparison with the film hydration method. International Journal of Pharmaceutics, 2021, 592, 120093.	2.6	30
25	Controlled synthesis of carboxylic acid end-capped poly(heptadecafluorodecyl acrylate) and copolymers with 2-hydroxyethyl acrylate. Journal of Polymer Science Part A, 2007, 45, 1499-1506.	2.5	29
26	Copper bromide complexed by fluorinated macroligands: towards microspheres by ATRP of vinyl monomers in scCO2. Chemical Communications, 2008, , 314-316.	2.2	29
27	CO ₂ ‣ourced αâ€Alkylidene Cyclic Carbonates: A Step Forward in the Quest for Functional Regioregular Poly(urethane)s and Poly(carbonate)s. Angewandte Chemie, 2017, 129, 10530-10534.	1.6	29
28	CO ₂ -sourced polycarbonates as solid electrolytes for room temperature operating lithium batteries. Journal of Materials Chemistry A, 2019, 7, 9844-9853.	5.2	29
29	A Switchable Domino Process for the Construction of Novel CO ₂ â€5ourced Sulfurâ€Containing Building Blocks and Polymers. Angewandte Chemie - International Edition, 2019, 58, 11768-11773.	7.2	26
30	"One-pot―dispersion ATRP and alkyne-azide Huisgen's 1,3-dipolar cycloaddition in supercritical carbon dioxide: Towards the formation of functional microspheres. Journal of Supercritical Fluids, 2010, 53, 151-155.	1.6	22
31	Dispersion nitroxide mediated polymerization of methyl methacrylate in supercritical carbon dioxide using in situ formed stabilizers. Polymer Chemistry, 2010, 1, 837.	1.9	22
32	Block, random and palm-tree amphiphilic fluorinated copolymers: controlled synthesis, surface activity and use as dispersion polymerization stabilizers. Polymer Chemistry, 2014, 5, 5273-5282.	1.9	22
33	Access to Biorenewable and CO ₂ -Based Polycarbonates from Exovinylene Cyclic Carbonates. ACS Sustainable Chemistry and Engineering, 2021, 9, 1714-1728.	3.2	22
34	Correlation between Superhydrophobicity and the Power Spectral Density of Randomly Rough Surfaces. Langmuir, 2010, 26, 17798-17803.	1.6	21
35	A Catalytic Domino Approach toward Oxo-Alkyl Carbonates and Polycarbonates from CO ₂ , Propargylic Alcohols, and (Mono- and Di-)Alcohols. ACS Sustainable Chemistry and Engineering, 2020, 8, 9698-9710.	3.2	21
36	CO ₂ ‣ourced Nonâ€Isocyanate Poly(Urethane)s with pH‣ensitive Imine Linkages. Advanced Synthesis and Catalysis, 2019, 361, 355-365.	2.1	20

BRUNO GRIGNARD

#	Article	IF	CITATIONS
37	Advancing the Synthesis of Isocyanate-Free Poly(oxazolidones)s: Scope and Limitations. Macromolecules, 2020, 53, 6396-6408.	2.2	20
38	Chemo―and Regioselective Additions of Nucleophiles to Cyclic Carbonates for the Preparation of Selfâ€Blowing Nonâ€Isocyanate Polyurethane Foams. Angewandte Chemie, 2020, 132, 17181-17189.	1.6	20
39	First example of "click―copper(i) catalyzed azide-alkyne cycloaddition in supercritical carbon dioxide: application to the functionalization of aliphatic polyesters. Green Chemistry, 2009, 11, 1525.	4.6	18
40	Merging CO ₂ -Based Building Blocks with Cobalt-Mediated Radical Polymerization for the Synthesis of Functional Poly(vinyl alcohol)s. Macromolecules, 2018, 51, 3379-3393.	2.2	18
41	Synergetic Effect of Dopamine and Alkoxysilanes in Sustainable Nonâ€ksocyanate Polyurethane Adhesives. Macromolecular Rapid Communications, 2021, 42, e2000538.	2.0	18
42	Synthesis of Biodegradable Poly-ε-caprolactone Microspheres by Dispersion Ring-Opening Polymerization in Supercritical Carbon Dioxide. Biomacromolecules, 2008, 9, 3141-3149.	2.6	17
43	Ring opening polymerization of Îμ-caprolactone in the presence of wet β-cyclodextrin: effect of the operative pressure and of water molecules in the β-cyclodextrin cavity. RSC Advances, 2016, 6, 90290-90299.	1.7	17
44	Waterâ€Borne Isocyanateâ€Free Polyurethane Hydrogels with Adaptable Functionality and Behavior. Macromolecular Rapid Communications, 2021, 42, e2000482.	2.0	17
45	Supported ATRP of fluorinated methacrylates in supercritical carbon dioxide: preparation of scCO2 soluble polymers with low catalytic residues. Chemical Communications, 2008, , 5803.	2.2	16
46	Cobalt-Mediated Radical Polymerization of Vinyl Acetate and Acrylonitrile in Supercritical Carbon Dioxide. Macromolecular Rapid Communications, 2016, 37, 539-544.	2.0	16
47	Synthesis of microsphere-loaded porous polymers by combining emulsion and dispersion polymerisations in supercritical carbon dioxide. Chemical Communications, 2012, 48, 8356.	2.2	15
48	Small-Angle X-ray Scattering Insights into the Architecture-Dependent Emulsifying Properties of Amphiphilic Copolymers in Supercritical Carbon Dioxide. Journal of Physical Chemistry B, 2015, 119, 1706-1716.	1.2	15
49	Enhanced and Reusable Poly(hydroxy urethane)-Based Low Temperature Hot-Melt Adhesives. ACS Polymers Au, 2022, 2, 194-207.	1.7	15
50	Functional Polyethylenes by Organometallic-Mediated Radical Polymerization of Biobased Carbonates. ACS Macro Letters, 2021, 10, 313-320.	2.3	14
51	Online Monitoring of Heterogeneous Polymerizations in Supercritical Carbon Dioxide by Raman Spectroscopy. ChemPhysChem, 2012, 13, 2666-2670.	1.0	13
52	En Route to CO2-Based (a)Cyclic Carbonates and Polycarbonates from Alcohols Substrates by Direct and Indirect Approaches. Catalysts, 2022, 12, 124.	1.6	13
53	Optimizing support properties of heterogeneous catalysts for the coupling of carbon dioxide with epoxides. Chemical Engineering Journal, 2019, 371, 719-729.	6.6	10
54	Heterogenization of a cyclocarbonation catalyst: Optimization and kinetic study. Catalysis Today, 2019, 334, 140-155.	2.2	10

BRUNO GRIGNARD

#	Article	IF	CITATIONS
55	Introducing Polyhydroxyurethane Hydrogels and Coatings for Formaldehyde Capture. ACS Applied Materials & Interfaces, 2021, 13, 54396-54408.	4.0	10
56	A Switchable Domino Process for the Construction of Novel CO 2 â€5ourced Sulfurâ€Containing Building Blocks and Polymers. Angewandte Chemie, 2019, 131, 11894-11899.	1.6	8
57	A photocleavable stabilizer for the preparation of PHEMA nanogels by dispersion polymerization in supercritical carbon dioxide. Polymer Chemistry, 2017, 8, 581-591.	1.9	7
58	Fast and Facile One-Pot One-Step Preparation of Nonisocyanate Polyurethane Hydrogels in Water at Room Temperature. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	7
59	Cascade Transformation of Carbon Dioxide and Alkyne-1, <i>n</i> -diols into Densely Substituted Cyclic Carbonates. ACS Catalysis, 2022, 12, 2854-2860.	5.5	7
60	Facile construction of functional poly(monothiocarbonate) copolymers under mild operating conditions. Polymer Chemistry, 2022, 13, 3076-3090.	1.9	7
61	Catalyst-Free Approach for the Degradation of Bio- and CO ₂ -Sourced Polycarbonates: A Step toward a Circular Plastic Economy. ACS Sustainable Chemistry and Engineering, 2022, 10, 8863-8875.	3.2	7
62	Exovinylene Cyclic Carbonates: Multifaceted CO ₂ â€Based Building Blocks for Modern Chemistry and Polymer Science. Angewandte Chemie, 2022, 134, .	1.6	4
63	Unifying Step-Growth Polymerization and On-Demand Cascade Ring-Closure Depolymerization via Polymer Skeletal Editing. Macromolecules, 2022, 55, 4637-4646.	2.2	4