
Daren C Gooddy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5274519/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A systematic approach to understand hydrogeochemical dynamics in large river systems: Development and application to the River Ganges (Ganga) in India. Water Research, 2022, 211, 118054.	5.3	13
2	δ180 as a tracer of PO43ⴒ losses from agricultural landscapes. Journal of Environmental Management, 2022, 317, 115299.	3.8	4
3	Environmental tracers and groundwater residence time indicators reveal controls of arsenic accumulation rates beneath a rapidly developing urban area in Patna, India. Journal of Contaminant Hydrology, 2022, 249, 104043.	1.6	10
4	Hydrogeology of an urban weathered basement aquifer in Kampala, Uganda. Hydrogeology Journal, 2022, 30, 1469-1487.	0.9	2
5	Quantifying the impacts of groundwater abstraction on Ganges river water infiltration into shallow aquifers under the rapidly developing city of Patna, India. Journal of Hydrology: Regional Studies, 2022, 42, 101133.	1.0	4
6	Emerging organic contaminants in groundwater under a rapidly developing city (Patna) in northern India dominated by high concentrations of lifestyle chemicals. Environmental Pollution, 2021, 268, 115765.	3.7	31
7	Environmental tracers to evaluate groundwater residence times and water quality risk in shallow unconfined aquifers in sub Saharan Africa. Journal of Hydrology, 2021, 598, 125753.	2.3	20
8	Global patterns of nitrate isotope composition in rivers and adjacent aquifers reveal reactive nitrogen cascading. Communications Earth & Environment, 2021, 2, .	2.6	56
9	Advection Not Dispersion and Transient Storage Controls Streambed Nutrient and Greenhouse Gas Concentrations. Frontiers in Water, 2021, 3, .	1.0	0
10	The need to integrate legacy nitrogen storage dynamics and time lags into policy and practice. Science of the Total Environment, 2021, 781, 146698.	3.9	31
11	Elevated uranium in drinking water sources in basement aquifers of southern India. Applied Geochemistry, 2021, 133, 105092.	1.4	12
12	The method controls the story - Sampling method impacts on the detection of pore-water nitrogen concentrations in streambeds. Science of the Total Environment, 2020, 709, 136075.	3.9	2
13	Prediction of regionalâ€scale groundwater recharge and nitrate storage in the vadose zone: A comparison between a global model and a regional model. Hydrological Processes, 2020, 34, 3347-3357.	1.1	7
14	Seasonal variability of sediment controls of nitrogen cycling in an agricultural stream. Biogeochemistry, 2020, 148, 31-48.	1.7	16
15	Changes in global groundwater organic carbon driven by climate change and urbanization. Nature Communications, 2020, 11, 1279.	5.8	128
16	Rates of hydroxyapatite formation and dissolution in a sandstone aquifer: Implications for understanding dynamic phosphate behaviour within an agricultural catchment. Applied Geochemistry, 2020, 115, 104534.	1.4	8
17	Determining the Impact of Riparian Wetlands on Nutrient Cycling, Storage and Export in Permeable Agricultural Catchments. Water (Switzerland), 2020, 12, 167.	1.2	14
18	Groundwater connectivity of a sheared gneiss aquifer in the Cauvery River basin, India. Hydrogeology Journal, 2020, 28, 1371-1388.	0.9	20

#	Article	IF	CITATIONS
19	A New Technique to Determine the Phosphate Oxygen Isotope Composition of Freshwater Samples at Low Ambient Phosphate Concentration. Environmental Science & Technology, 2019, 53, 10288-10294.	4.6	16
20	Seasonal variability of sediment controls of carbon cycling in an agricultural stream. Science of the Total Environment, 2019, 688, 732-741.	3.9	18
21	Towards a global interpretation of dual nitrate isotopes in surface waters. Journal of Hydrology X, 2019, 4, 100037.	0.8	16
22	Dissolved organic matter tracers reveal contrasting characteristics across high arsenic aquifers in Cambodia: A fluorescence spectroscopy study. Geoscience Frontiers, 2019, 10, 1653-1667.	4.3	28
23	Provenance of drinking water revealed through compliance sampling. Environmental Sciences: Processes and Impacts, 2019, 21, 1052-1064.	1.7	5
24	Geological structure as a control on floodplain groundwater dynamics. Hydrogeology Journal, 2019, 27, 703-716.	0.9	19
25	Reply to â€ [~] Pseudoreplication and greenhouse-gas emissions from rivers'. Nature Communications, 2019, 10, 5369.	5.8	0
26	Dual in-aquifer and near surface processes drive arsenic mobilization in Cambodian groundwaters. Science of the Total Environment, 2019, 659, 699-714.	3.9	25
27	Use and application of CFC-11, CFC-12, CFC-113 and SF6 as environmental tracers of groundwater residence time: A review. Geoscience Frontiers, 2019, 10, 1643-1652.	4.3	34
28	Online fluorescence spectroscopy for the real-time evaluation of the microbial quality of drinking water. Water Research, 2018, 137, 301-309.	5.3	76
29	Public Water Supply Is Responsible for Significant Fluxes of Inorganic Nitrogen in the Environment. Environmental Science & Technology, 2018, 52, 14050-14060.	4.6	3
30	Water and nitrate exchange between a managed river and peri-urban floodplain aquifer: Quantification and management implications. Ecological Engineering, 2018, 123, 226-237.	1.6	9
31	Phosphorus fluxes to the environment from mains water leakage: Seasonality and future scenarios. Science of the Total Environment, 2018, 636, 1321-1332.	3.9	10
32	Thermal sensitivity of CO2 and CH4 emissions varies with streambed sediment properties. Nature Communications, 2018, 9, 2803.	5.8	45
33	Evaluating the stable isotopic composition of phosphate oxygen as a tracer of phosphorus from waste water treatment works. Applied Geochemistry, 2018, 95, 139-146.	1.4	15
34	Deep urban groundwater vulnerability in India revealed through the use of emerging organic contaminants and residence time tracers. Environmental Pollution, 2018, 240, 938-949.	3.7	94
35	Security of Deep Groundwater in the Coastal Bengal Basin Revealed by Tracers. Geophysical Research Letters, 2018, 45, 8241-8252.	1.5	25
36	Mains water leakage: Implications for phosphorus source apportionment and policy responses in catchments. Science of the Total Environment, 2017, 579, 702-708.	3.9	20

#	Article	IF	CITATIONS
37	Opening Opportunities for High-Resolution Isotope Analysis - Quantification of Î ¹⁵ N _{NO3} and Î ¹⁸ O _{NO3} in Diffusive Equilibrium in Thin–Film Passive Samplers. Analytical Chemistry, 2017, 89, 4139-4146.	3.2	2
38	Role of Humic Acid in the Stability of Ag Nanoparticles in Suboxic Conditions. Environmental Science & Technology, 2017, 51, 6063-6070.	4.6	24
39	Global patterns of nitrate storage in the vadose zone. Nature Communications, 2017, 8, 1416.	5.8	233
40	The Influence of Flow and Bed Slope on Gas Transfer in Steep Streams and Their Implications for Evasion of CO ₂ . Journal of Geophysical Research G: Biogeosciences, 2017, 122, 2862-2875.	1.3	24
41	Testing tritium-helium groundwater dating in the Chalk aquifer of the Berkshire Downs, UK. Geochemical Journal, 2017, 51, 409-421.	0.5	7
42	Long-term Holocene groundwater fluctuations in a chalk catchment: evidence from Rock-Eval pyrolysis of riparian peats. Hydrological Processes, 2016, 30, 4556-4567.	1.1	25
43	Impacts of extreme flooding on riverbank filtration water quality. Science of the Total Environment, 2016, 554-555, 89-101.	3.9	46
44	Integrated timeâ€lapse geoelectrical imaging of wetland hydrological processes. Water Resources Research, 2016, 52, 1607-1625.	1.7	36
45	Estimating the leakage contribution of phosphate dosed drinking water to environmental phosphorus pollution at the national-scale. Science of the Total Environment, 2016, 572, 1534-1542.	3.9	34
46	A multi-stable isotope framework to understand eutrophication in aquatic ecosystems. Water Research, 2016, 88, 623-633.	5.3	83
47	Groundwater recharge and ageâ€depth profiles of intensively exploited groundwater resources in northwest India. Geophysical Research Letters, 2015, 42, 7554-7562.	1.5	79
48	Groundwater recharge and flow on Montserrat, West Indies: Insights from groundwater dating. Journal of Hydrology: Regional Studies, 2015, 4, 611-622.	1.0	9
49	Fluvial response to Late Pleistocene and Holocene environmental change in a Thames chalkland headwater: the Lambourn of southern England. Proceedings of the Geologists Association, 2015, 126, 683-697.	0.6	15
50	Isotopic Fingerprint for Phosphorus in Drinking Water Supplies. Environmental Science & Technology, 2015, 49, 9020-9028.	4.6	35
51	Discrete wetland groundwater discharges revealed with a three-dimensional temperature model and botanical indicators (Boxford, UK). Hydrogeology Journal, 2015, 23, 775-787.	0.9	15
52	Emerging contaminants in urban groundwater sources in Africa. Water Research, 2015, 72, 51-63.	5.3	243
53	A model of potential carbon dioxide efflux from surface water across England and Wales using headwater stream survey data and landscape predictors. Biogeosciences, 2014, 11, 1911-1925.	1.3	9
54	Groundwater, flooding and hydrological functioning in the Findhorn floodplain, Scotland. Hydrology Research, 2014, 45, 755-773.	1.1	17

#	Article	IF	CITATIONS
55	Microbial communities in UK aquifers: current understanding and future research needs. Quarterly Journal of Engineering Geology and Hydrogeology, 2014, 47, 145-157.	0.8	17
56	Phosphate oxygen isotopes within aquatic ecosystems: Global data synthesis and future research priorities. Science of the Total Environment, 2014, 496, 563-575.	3.9	64
57	Using 18 O/ 2 H, 3 H/ 3 He, 85 Kr and CFCs to determine mean residence times and water origin in the Grazer and Leibnitzer Feld groundwater bodies (Austria). Applied Geochemistry, 2014, 50, 150-163.	1.4	21
58	Groundwater conceptual models: implications for evaluating diffuse pollution mitigation measures. Quarterly Journal of Engineering Geology and Hydrogeology, 2014, 47, 65-80.	0.8	25
59	Nitrogen sources, transport and processing in peri-urban floodplains. Science of the Total Environment, 2014, 494-495, 28-38.	3.9	53
60	Instream and riparian implications of weed cutting in a chalk river. Ecological Engineering, 2014, 71, 290-300.	1.6	29
61	Derivation of lowland riparian wetland deposit architecture using geophysical image analysis and interface detection. Water Resources Research, 2014, 50, 5886-5905.	1.7	41
62	Geoelectrical Monitoring of Complex Hydrological Processes in a Riparian Wetland. , 2014, , .		1
63	Residence times of shallow groundwater in West Africa: implications for hydrogeology and resilience to future changes in climate. Hydrogeology Journal, 2013, 21, 673-686.	0.9	83
64	A combined geochemical and hydrological approach for understanding macronutrient sources. Journal of Hydrology, 2013, 500, 226-242.	2.3	12
65	Characterization of Suboxic Groundwater Colloids Using a Multi-method Approach. Environmental Science & Technology, 2013, 47, 2554-2561.	4.6	29
66	The nitrate time bomb: a numerical way to investigate nitrate storage and lag time in the unsaturated zone. Environmental Geochemistry and Health, 2013, 35, 667-681.	1.8	92
67	The practicalities of using CFCs and SF6 for groundwater dating and tracing. Applied Geochemistry, 2012, 27, 1688-1697.	1.4	96
68	Prediction of the arrival of peak nitrate concentrations at the water table at the regional scale in Great Britain. Hydrological Processes, 2012, 26, 226-239.	1.1	81
69	The hydrochemistry of a Chalk aquifer during recovery from drought. Quarterly Journal of Engineering Geology and Hydrogeology, 2012, 45, 473-486.	0.8	9
70	A review of the impact of climate change on future nitrate concentrations in groundwater of the UK. Science of the Total Environment, 2011, 409, 2859-2873.	3.9	130
71	Understanding Phosphorus Mobility and Bioavailability in the Hyporheic Zone of a Chalk Stream. Water, Air, and Soil Pollution, 2011, 218, 213-226.	1.1	24
72	Interaction between groundwater, the hyporheic zone and a Chalk stream: a case study from the River Lambourn, UK. Hydrogeology Journal, 2010, 18, 1125-1141.	0.9	40

#	Article	IF	CITATIONS
73	Groundwater residence time and movement in the Maltese islands – A geochemical approach. Applied Geochemistry, 2010, 25, 609-620.	1.4	35
74	Using environmental tracers to assess the extent of river–groundwater interaction in a quarried area of the English Chalk. Applied Geochemistry, 2010, 25, 923-932.	1.4	18
75	Understanding groundwater, surface water, and hyporheic zone biogeochemical processes in a Chalk catchment using fluorescence properties of dissolved and colloidal organic matter. Journal of Geophysical Research, 2009, 114, .	3.3	52
76	Tracing groundwater flow and sources of organic carbon in sandstone aquifers using fluorescence properties of dissolved organic matter (DOM). Applied Geochemistry, 2008, 23, 3384-3390.	1.4	70
77	Introduction to the Nitrate in Groundwater papers. Quarterly Journal of Engineering Geology and Hydrogeology, 2007, 40, 333-333.	0.8	6
78	87Sr/86Sr as an indicator of flowpaths and weathering rates in the Plynlimon experimental catchments, Wales, U.K Chemical Geology, 2007, 236, 247-265.	1.4	61
79	A rapid method for determining apparent diffusion coefficients in Chalk and other consolidated porous media. Journal of Hydrology, 2007, 343, 97-103.	2.3	10
80	Assessing the applicability of global CFC and SF6 input functions to groundwater dating in the UK. Science of the Total Environment, 2007, 387, 353-362.	3.9	25
81	The significance of colloids in the transport of pesticides through Chalk. Science of the Total Environment, 2007, 385, 262-271.	3.9	24
82	Source and persistence of pesticides in a semi-confined chalk aquifer of southeast England. Environmental Pollution, 2006, 144, 1031-1044.	3.7	96
83	The hydrogeochemistry of methane: Evidence from English groundwaters. Chemical Geology, 2006, 229, 293-312.	1.4	77
84	Using chlorofluorocarbons (CFCs) and sulphur hexafluoride (SF6) to characterise groundwater movement and residence time in a lowland Chalk catchment. Journal of Hydrology, 2006, 330, 44-52.	2.3	122
85	Pesticides in groundwater: some observations on temporal and spatial trends. Water and Environment Journal, 2006, 20, 55-64.	1.0	46
86	A Field and Modeling Study to Determine Pesticide Occurrence in a Public Water Supply in Northern England, UK. Ground Water Monitoring and Remediation, 2006, 26, 128-136.	0.6	11
87	Assessing the extent of induced leakage to an urban aquifer using environmental tracers: an example from Bishkek, capital of Kyrgyzstan, Central Asia. Hydrogeology Journal, 2006, 14, 225-243.	0.9	37
88	Assessing the impact of modern recharge on a sandstone aquifer beneath a suburb of Doncaster, UK. Hydrogeology Journal, 2006, 14, 979-997.	0.9	34
89	Impacts of climate change on the fate and behaviour of pesticides in surface and groundwater—a UK perspective. Science of the Total Environment, 2006, 369, 163-177.	3.9	278
90	Controls on dense non-aqueous-phase liquid transport in Permo-Triassic sandstones, UK. Geological Society Special Publication, 2006, 263, 253-264.	0.8	0

#	Article	IF	CITATIONS
91	GROUNDWATER AGE INDICATORS FROM PUBLIC SUPPLIES TAPPING THE CHALK AQUIFER OF SOUTHERN ENGLAND. Water and Environment Journal, 2005, 19, 30-40.	1.0	25
92	USE OF GROUNDWATER AGE INDICATORS IN RISK ASSESSMENT TO AID WATER SUPPLY OPERATIONAL PLANNING. Water and Environment Journal, 2005, 19, 41-48.	1.0	13
93	The potential for methane emissions from groundwaters of the UK. Science of the Total Environment, 2005, 339, 117-126.	3.9	42
94	Hydrochemical heterogeneity in an upland catchment: further characterisation of the spatial, temporal and depth variations in soils, streams and groundwaters of the Plynlimon forested catchment, Wales. Hydrology and Earth System Sciences, 2005, 9, 621-644.	1.9	59
95	Pesticide fate and behaviour in the UK Chalk aquifer, and implications for groundwater quality. Quarterly Journal of Engineering Geology and Hydrogeology, 2005, 38, 65-81.	0.8	23
96	Pesticide pollution of the Triassic Sandstone aquifer of South Yorkshire. Quarterly Journal of Engineering Geology and Hydrogeology, 2005, 38, 53-63.	0.8	14
97	Mapping the risk to groundwater resources from farm waste stores in England and Wales. Quarterly Journal of Engineering Geology and Hydrogeology, 2004, 37, 293-300.	0.8	4
98	Changes in Interfacial Tension of Chlorinated Solvents following Flow through U.K. Soils and Shallow Aquifer Material. Environmental Science & Technology, 2003, 37, 1919-1925.	4.6	12
99	MOVEMENT OF LEACHATE FROM BENEATH TURKEY LITTER SITED OVER CHALK IN SOUTHERN ENGLAND. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2002, 37, 81-91.	0.7	5
100	Redox-driven changes in porewater chemistry in the unsaturated zone of the chalk aquifer beneath unlined cattle slurry lagoons. Applied Geochemistry, 2002, 17, 903-921.	1.4	45
101	A field study to assess the degradation and transport of diuron and its metabolites in a calcareous soil. Science of the Total Environment, 2002, 297, 67-83.	3.9	102
102	Towards a better understanding of tetrachloroethene entry pressure in the matrix of Permo-Triassic sandstones. Journal of Contaminant Hydrology, 2002, 59, 247-265.	1.6	11
103	Wettability Changes in Trichloroethylene-Contaminated Sandstone. Environmental Science & Technology, 2001, 35, 1504-1510.	4.6	64
104	Trihalomethane formation potential: a tool for detecting non-specific organic groundwater contamination. Urban Water, 2001, 3, 173-184.	0.5	15
105	Assessing Herbicide Concentrations In the Saturated and Unsaturated Zone of a Chalk Aquifer in Southern England. Ground Water, 2001, 39, 262-271.	0.7	27
106	Penetration of herbicides to groundwater in an unconfined chalk aquifer following normal soil applications. Journal of Contaminant Hydrology, 2001, 53, 101-117.	1.6	70
107	Metal ion geochemistry in smelter impacted soils and soil solutions. Bulletin - Societie Geologique De France, 2001, 172, 539-548.	0.9	29
108	Field and modelling studies to assess the risk to UK groundwater from earthâ€based stores for livestock manure. Soil Use and Management, 2001, 17, 128-137.	2.6	16

#	Article	IF	CITATIONS
109	Groundwater evolution beneath Hat Yai, a rapidly developing city in Thailand. Hydrogeology Journal, 2000, 8, 564-575.	0.9	58
110	Title is missing!. Water, Air, and Soil Pollution, 1998, 107, 51-72.	1.1	27
111	Metal ion binding by natural organic matter: From the model to the field. Geochimica Et Cosmochimica Acta, 1996, 60, 2503-2513.	1.6	229
112	Field-based partition coefficients for trace elements in soil solutions. European Journal of Soil Science, 1995, 46, 265-285.	1.8	120