
Xinchun Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5273698/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In situ TEM measurement of electrical properties of individual BaTiO3 nanocubes. Applied Physics Letters, 2021, 118, 192901.	3.3	3
2	In Situ Transmission Electron Microscopy Study of Conductive Filament Formation in Copper Oxides. IEEE Transactions on Device and Materials Reliability, 2020, 20, 609-612.	2.0	0
3	Structural Instability in Electrically Stressed, Oxygen Deficient BaTiO ₃ Nanocrystals. Advanced Functional Materials, 2020, 30, 2004607.	14.9	9
4	Direct Observations of Field-Intensity-Dependent Dielectric Breakdown Mechanisms in TiO2 Single Nanocrystals. ACS Nano, 2020, 14, 8328-8334.	14.6	3
5	Suppressing Evaporative Loss in Slippery Liquid-Infused Porous Surfaces (SLIPS) with Self-Suspended Perfluorinated Nanoparticles. Langmuir, 2020, 36, 5106-5111.	3.5	12
6	Motion of phase boundary during antiferroelectric–ferroelectric transition in a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>PbZrO</mml:mi><mr -based ceramic. Physical Review Materials, 2020, 4, .</mr </mml:msub></mml:mrow></mml:math 	nl 2 man>3 </td <td>m9nl:mn></td>	m 9 nl:mn>
7	<i>In situ</i> TEM study of the transitions between crystalline Si and nonstoichiometric amorphous oxide under bipolar voltage bias. Journal of Applied Physics, 2019, 125, .	2.5	5
8	Self-Regulated Porosity and Reactivity in Mesoporous Heterogeneous Catalysts Using Colloidal Nanocrystals. Journal of Physical Chemistry C, 2019, 123, 18410-18416.	3.1	5
9	Self-Limiting Processes in the Flame-Based Fabrication of Superhydrophobic Surfaces from Silicones. ACS Applied Materials & Interfaces, 2019, 11, 29231-29241.	8.0	11
10	Ovarian Primary and Metastatic Tumors Suppressed by Survivin Knockout or a Novel Survivin Inhibitor. Molecular Cancer Therapeutics, 2019, 18, 2233-2245.	4.1	31
11	In Situ TEM Study of the Amorphous-to-Crystalline Transition during Dielectric Breakdown in TiO ₂ Film. ACS Applied Materials & Interfaces, 2019, 11, 40726-40733.	8.0	13
12	On the kinetics of the removal of ligands from films of colloidal nanocrystals by plasmas. Physical Chemistry Chemical Physics, 2019, 21, 1614-1622.	2.8	4
13	Stress response to CO2 deprivation by Arabidopsis thaliana in plant cultures. PLoS ONE, 2019, 14, e0212462.	2.5	14
14	HOMEs for plants and microbes – a phenotyping approach with quantitative control of signaling between organisms and their individual environments. Lab on A Chip, 2018, 18, 620-626.	6.0	3
15	From Petri Dishes to Model Ecosystems. Trends in Plant Science, 2018, 23, 378-381.	8.8	3
16	Large-Scale Synthesis of Colloidal Si Nanocrystals and Their Helium Plasma Processing into Spin-On, Carbon-Free Nanocrystalline Si Films. ACS Applied Materials & Interfaces, 2018, 10, 20740-20747.	8.0	5
17	Selective Removal of Ligands from Colloidal Nanocrystal Assemblies with Non-Oxidizing He Plasmas. Chemistry of Materials, 2018, 30, 5961-5967.	6.7	17
18	Simplicity as a Route to Impact in Materials Research. Advanced Materials, 2017, 29, 1604681.	21.0	15

XINCHUN TIAN

#	Article	IF	CITATIONS
19	Building Materials from Colloidal Nanocrystal Assemblies: Molecular Control of Solid/Solid Interfaces in Nanostructured Tetragonal ZrO2. Chemistry of Materials, 2017, 29, 7888-7900.	6.7	12
20	Calcination does not remove all carbon from colloidal nanocrystal assemblies. Nature Communications, 2017, 8, 2038.	12.8	52
21	Sulfur in oleylamine as a powerful and versatile etchant for oxide, sulfide, and metal colloidal nanoparticles. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600543.	1.8	7
22	Thermal Processing of Silicones for Green, Scalable, and Healable Superhydrophobic Coatings. Advanced Materials, 2016, 28, 3677-3682.	21.0	165
23	Building Materials from Colloidal Nanocrystal Arrays: Preventing Crack Formation during Ligand Removal by Controlling Structure and Solvation. Advanced Materials, 2016, 28, 8892-8899.	21.0	33
24	Photonic structure arrays generated using butterfly wing scales as biological units. Journal of Materials Chemistry B, 2015, 3, 1743-1747.	5.8	6