
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5273495/publications.pdf Version: 2024-02-01

TEDDIE F INDED

#	Article	IF	CITATIONS
1	Why monitor the neonatal brain—that is the important question. Pediatric Research, 2023, 93, 19-21.	2.3	6
2	Brain injury in preterm infants with surgical necrotizing enterocolitis: clinical and bowel pathological correlates. Pediatric Research, 2022, 91, 1182-1195.	2.3	23
3	Comparison of numerical and standard sarnat grading using the NICHD and SIBEN methods. Journal of Perinatology, 2022, 42, 328-334.	2.0	6
4	Value of cranial ultrasound at initiation of therapeutic hypothermia for neonatal encephalopathy. Journal of Perinatology, 2022, 42, 335-340.	2.0	4
5	The Structural Connectome and Internalizing and Externalizing Symptoms at 7 and 13 Years in Individuals Born Very Preterm and Full Term. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2022, 7, 424-434.	1.5	7
6	Differences in standardized neonatal encephalopathy exam criteria may impact therapeutic hypothermia eligibility. Pediatric Research, 2022, 92, 791-798.	2.3	9
7	Investigating brain structural maturation in children and adolescents born very preterm using the brain age framework. NeuroImage, 2022, 247, 118828.	4.2	8
8	Associations of body composition with regional brain volumes and white matter microstructure in very preterm infants. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2022, 107, 533-538.	2.8	11
9	Five-year outcomes of premature infants randomized to high or standard loading dose caffeine. Journal of Perinatology, 2022, 42, 631-635.	2.0	3
10	Pathogenesis and prevention of intraventricular hemorrhage. Seminars in Perinatology, 2022, 46, 151592.	2.5	11
11	Human Milk and Preterm Infant Brain Development: A Narrative Review. Clinical Therapeutics, 2022, 44, 612-621.	2.5	17
12	Brain tissue microstructural and free-water composition 13 years after very preterm birth. NeuroImage, 2022, 254, 119168.	4.2	5
13	Brain White Matter Development Over the First 13 Years in Very Preterm and Typically Developing Children Based on the <i>T</i> ₁ -w/ <i>T</i> ₂ -w Ratio. Neurology, 2022, 98, .	1.1	6
14	Development of regional brain gray matter volume across the first 13Âyears of life is associated with childhood math computation ability for children born very preterm and full term. Brain and Cognition, 2022, 160, 105875.	1.8	3
15	Clinical experience with an in-NICU magnetic resonance imaging system. Journal of Perinatology, 2022, 42, 873-879.	2.0	10
16	Hypocapnia in early hours of life is associated with brain injury in moderate to severe neonatal encephalopathy. Journal of Perinatology, 2022, 42, 892-897.	2.0	1
17	Association of early cerebral oxygen saturation and brain injury in extremely preterm infants. Journal of Perinatology, 2022, 42, 1385-1391.	2.0	7
18	Early parenting is associated with the developing brains of children born very preterm. Clinical Neuropsychologist, 2021, 35, 885-903.	2.3	15

#	Article	IF	CITATIONS
19	Surgery requiring general anesthesia in preterm infants is associated with altered brain volumes at term equivalent age and neurodevelopmental impairment. Pediatric Research, 2021, 89, 1200-1207.	2.3	20
20	White matter tracts related to memory and emotion in very preterm children. Pediatric Research, 2021, 89, 1452-1460.	2.3	7
21	Association between cerebral oxygen saturation and brain injury in neonates receiving therapeutic hypothermia for neonatal encephalopathy. Journal of Perinatology, 2021, 41, 269-277.	2.0	9
22	A randomized controlled trial investigating the impact of maternal dietary supplementation with pomegranate juice on brain injury in infants with IUGR. Scientific Reports, 2021, 11, 3569.	3.3	11
23	Cerebrospinal fluid NCAM-1 concentration is associated with neurodevelopmental outcome in post-hemorrhagic hydrocephalus of prematurity. PLoS ONE, 2021, 16, e0247749.	2.5	6
24	Interobserver Reliability of an MR Imaging Scoring System in Infants with Hypoxic-Ischemic Encephalopathy. American Journal of Neuroradiology, 2021, 42, 969-974.	2.4	5
25	Targeting human milk fortification to improve very preterm infant growth and brain development: study protocol for Nourish, a single-center randomized, controlled clinical trial. BMC Pediatrics, 2021, 21, 167.	1.7	11
26	Utilising recorded music to reduce stress and enhance infant neurodevelopment in neonatal intensive care units. Acta Paediatrica, International Journal of Paediatrics, 2021, 110, 2921-2936.	1.5	3
27	Reading Aloud with Infants in the Neonatal Intensive Care Unit: A Unit-Based Program to Enhance Language Enrichment and Support Early Foundational Relationships. American Journal of Perinatology, 2021, , .	1.4	0
28	Blood gas measures as predictors for neonatal encephalopathy severity. Journal of Perinatology, 2021, 41, 2261-2269.	2.0	4
29	Reply. Journal of Pediatrics, 2021, 239, 248-249.	1.8	0
30	Development of brain white matter and math computation ability in children born very preterm and full-term. Developmental Cognitive Neuroscience, 2021, 51, 100987.	4.0	4
31	Neuroimaging of the Preterm Brain: Review and Recommendations. Journal of Pediatrics, 2021, 237, 276-287.e4.	1.8	36
32	Individual Attention Patterns in Children Born Very Preterm and Full Term at 7 and 13 Years of Age. Journal of the International Neuropsychological Society, 2021, 27, 970-980.	1.8	13
33	Tract-Specific Relationships Between Cerebrospinal Fluid Biomarkers and Periventricular White Matter in Posthemorrhagic Hydrocephalus of Prematurity. Neurosurgery, 2021, 88, 698-706.	1.1	6
34	Neuroimaging in the term newborn with neonatal encephalopathy. Seminars in Fetal and Neonatal Medicine, 2021, 26, 101304.	2.3	21
35	Maternal Diet, Infection, and Risk of Cord Blood Inflammation in the Bangladesh Projahnmo Pregnancy Cohort. Nutrients, 2021, 13, 3792.	4.1	3
36	Neonatal brain abnormalities and brain volumes associated with goal setting outcomes in very preterm 13-year-olds. Brain Imaging and Behavior, 2020, 14, 1062-1073.	2.1	12

#	Article	IF	CITATIONS
37	Longitudinal growth of the basal ganglia and thalamus in very preterm children. Brain Imaging and Behavior, 2020, 14, 998-1011.	2.1	24
38	Management of Post-hemorrhagic Ventricular Dilatation in the InfantÂBornÂPreterm. Journal of Pediatrics, 2020, 226, 16-27.e3.	1.8	43
39	Macronutrient Intake from Human Milk, Infant Growth, and Body Composition at Term Equivalent Age: A Longitudinal Study of Hospitalized Very Preterm Infants. Nutrients, 2020, 12, 2249.	4.1	21
40	Early neurobehavior at 30Âweeks postmenstrual age is related to outcome at term equivalent age. Early Human Development, 2020, 146, 105057.	1.8	4
41	Late onset oxygen requirement following neonatal therapeutic hypothermia. Acta Paediatrica, International Journal of Paediatrics, 2020, 109, 2258-2265.	1.5	4
42	The influence of pain, agitation, and their management on the immature brain. Pediatric Research, 2020, 88, 168-175.	2.3	100
43	Rates and Stability of Mental Health Disorders in Children Born Very Preterm at 7 and 13 Years. Pediatrics, 2020, 145, .	2.1	19
44	Maternal pomegranate juice intake and brain structure and function in infants with intrauterine growth restriction: A randomized controlled pilot study. PLoS ONE, 2019, 14, e0219596.	2.5	18
45	Associations of Growth and Body Composition with Brain Size in PretermÂInfants. Journal of Pediatrics, 2019, 214, 20-26.e2.	1.8	30
46	The Growth and Development Unit. A proposed approach for enhancing infant neurodevelopment and family-centered care in the Neonatal Intensive Care Unit. Journal of Perinatology, 2019, 39, 1684-1687.	2.0	18
47	Encephalopathy in neonates with subgaleal hemorrhage is a key predictor of outcome. Pediatric Research, 2019, 86, 234-241.	2.3	10
48	Should therapeutic hypothermia be offered to babies with mild neonatal encephalopathy in the first 6 h after birth?. Pediatric Research, 2019, 85, 442-448.	2.3	46
49	Thirteen-Year Outcomes in Very Preterm Children Associated with Diffuse Excessive High Signal Intensity on Neonatal Magnetic Resonance Imaging. Journal of Pediatrics, 2019, 206, 66-71.e1.	1.8	17
50	Early-Emerging Sulcal Patterns Are Atypical in Fetuses with Congenital Heart Disease. Cerebral Cortex, 2019, 29, 3605-3616.	2.9	40
51	MRI as a biomarker for mild neonatal encephalopathy. Early Human Development, 2018, 120, 75-79.	1.8	24
52	Developmental Trajectory of Language From 2 to 13 Years in Children Born Very Preterm. Pediatrics, 2018, 141, .	2.1	38
53	Hypoxic-Ischemic Injury in the Term Infant. , 2018, , 510-563.e15.		19
54	Brain growth in the NICU: critical periods of tissue-specific expansion. Pediatric Research, 2018, 83, 976-981.	2.3	34

#	Article	IF	CITATIONS
55	Goal Setting Deficits at 13 Years in Very Preterm Born Children. Journal of the International Neuropsychological Society, 2018, 24, 372-381.	1.8	5
56	Protection of melatonin in experimental models of newborn hypoxicâ€ischemic brain injury through <scp>MT</scp> 1 receptor. Journal of Pineal Research, 2018, 64, e12443.	7.4	62
57	White matter microstructure is associated with language in children born very preterm. NeuroImage: Clinical, 2018, 20, 808-822.	2.7	28
58	Prenatal to postnatal trajectory of brain growth in complex congenital heart disease. NeuroImage: Clinical, 2018, 20, 913-922.	2.7	36
59	Intrauterine, Intrapartum Assessments in the Term Infant. , 2018, , 458-483.e8.		1
60	Differential Rates of Perinatal Maturation of Human Primary and Nonprimary Auditory Cortex. ENeuro, 2018, 5, ENEURO.0380-17.2017.	1.9	29
61	Diffusion Tensor Tractography of the Cerebellar Peduncles in Prematurely Born 7-Year-Old Children. Cerebellum, 2017, 16, 314-325.	2.5	19
62	Auditory Exposure in the Neonatal Intensive Care Unit: Room Type and Other Predictors. Journal of Pediatrics, 2017, 183, 56-66.e3.	1.8	61
63	The Frequency and Severity of Magnetic Resonance Imaging Abnormalities in Infants with Mild Neonatal Encephalopathy. Journal of Pediatrics, 2017, 187, 26-33.e1.	1.8	76
64	Associations of Newborn Brain Magnetic Resonance Imaging with Long-Term Neurodevelopmental Impairments in Very Preterm Children. Journal of Pediatrics, 2017, 187, 58-65.e1.	1.8	103
65	Neurologic Injury in Acidemic Term Infants. American Journal of Perinatology, 2017, 34, 668-675.	1.4	11
66	Early Therapy Services Following Neonatal Intensive Care Unit Discharge. Physical and Occupational Therapy in Pediatrics, 2017, 37, 414-424.	1.3	13
67	Perinatal and neonatal use of sedation and analgesia. Seminars in Fetal and Neonatal Medicine, 2017, 22, 314-320.	2.3	23
68	Neonatal basal ganglia and thalamic volumes: very preterm birth and 7-year neurodevelopmental outcomes. Pediatric Research, 2017, 82, 970-978.	2.3	59
69	Umbilical Artery Lactate Correlates with Brain Lactate in Term Infants. American Journal of Perinatology, 2017, 34, 535-540.	1.4	5
70	Cerebrospinal fluid biomarkers of infantile congenital hydrocephalus. PLoS ONE, 2017, 12, e0172353.	2.5	21
71	Preterm brain injury on term-equivalent age MRI in relation to perinatal factors and neurodevelopmental outcome at two years. PLoS ONE, 2017, 12, e0177128.	2.5	58
72	Resting-State Network Complexity and Magnitude Are Reduced in Prematurely Born Infants. Cerebral Cortex, 2016, 26, 322-333.	2.9	145

#	Article	IF	CITATIONS
73	Neonatal Brain Tissue Classification with Morphological Adaptation and Unified Segmentation. Frontiers in Neuroinformatics, 2016, 10, 12.	2.5	84
74	Examination of the Pattern of Growth of Cerebral Tissue Volumes From Hospital Discharge to Early Childhood in Very Preterm Infants. JAMA Pediatrics, 2016, 170, 772.	6.2	54
75	Defining the nature and implications of head turn preference in the preterm infant. Early Human Development, 2016, 96, 53-60.	1.8	14
76	Prediction of brain maturity in infants using machine-learning algorithms. NeuroImage, 2016, 136, 1-9.	4.2	111
77	Breast Milk Feeding, Brain Development, and Neurocognitive Outcomes: A 7-Year Longitudinal Study in Infants Born at Less Than 30 Weeks' Gestation. Journal of Pediatrics, 2016, 177, 133-139.e1.	1.8	217
78	Early High-Dose Caffeine Increases Seizure Burden in Extremely Preterm Neonates: A Preliminary Study. Journal of Caffeine Research, 2016, 6, 101-107.	0.9	39
79	Neonatal brain abnormalities associated with autism spectrum disorder in children born very preterm. Autism Research, 2016, 9, 543-552.	3.8	34
80	Parenting behavior at 2Âyears predicts schoolâ€age performance at 7Âyears in very preterm children. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2016, 57, 814-821.	5.2	75
81	Structural connectivity relates to perinatal factors and functional impairment at 7 years in children born very preterm. NeuroImage, 2016, 134, 328-337.	4.2	58
82	Axon density and axon orientation dispersion in children born preterm. Human Brain Mapping, 2016, 37, 3080-3102.	3.6	50
83	Functional Imaging of the Developing Brain at the Bedside Using Diffuse Optical Tomography. Cerebral Cortex, 2016, 26, 1558-1568.	2.9	85
84	Comparison of cortical folding measures for evaluation of developing human brain. NeuroImage, 2016, 125, 780-790.	4.2	92
85	Cortical Gray and Adjacent White Matter Demonstrate Synchronous Maturation in Very Preterm Infants. Cerebral Cortex, 2016, 26, 3370-3378.	2.9	53
86	Neonatal Infection and Later Neurodevelopmental Risk in the Very PretermÂInfant. Journal of Pediatrics, 2016, 170, 97-104.	1.8	76
87	Regional white matter development in very preterm infants: perinatal predictors and early developmental outcomes. Pediatric Research, 2016, 79, 87-95.	2.3	58
88	White matter abnormalities and impaired attention abilities in children born very preterm. NeuroImage, 2016, 124, 75-84.	4.2	54
89	Neurodevelopmental Outcomes and Neural Mechanisms Associated with Non-right Handedness in Children Born Very Preterm. Journal of the International Neuropsychological Society, 2015, 21, 610-621.	1.8	3
90	Accelerated corpus callosum development in prematurity predicts improved outcome. Human Brain Mapping, 2015, 36, 3733-3748.	3.6	27

#	Article	IF	CITATIONS
91	Assessment of Autism Symptoms During the Neonatal Period: Is There Early Evidence of Autism Risk?. American Journal of Occupational Therapy, 2015, 69, 6904220010p1-6904220010p11.	0.3	15
92	Neurodevelopmental Profile, Growth, and Psychosocial Environment of Preterm Infants with Difficult Feeding Behavior at Age 2 Years. Journal of Pediatrics, 2015, 167, 1347-1353.	1.8	23
93	Cortical structural abnormalities in very preterm children at 7years of age. NeuroImage, 2015, 109, 469-479.	4.2	74
94	High Postnatal Growth Hormone Levels Are Related to Cognitive Deficits in a Group of Children Born Very Preterm. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 2709-2717.	3.6	6
95	A pilot randomized trial of high-dose caffeine therapy in preterm infants. Pediatric Research, 2015, 78, 198-204.	2.3	93
96	Neonatal Morphine Exposure in Very Preterm Infants—Cerebral Development and Outcomes. Journal of Pediatrics, 2015, 166, 1200-1207.e4.	1.8	88
97	Neonatal MRI is associated with future cognition and academic achievement in preterm children. Brain, 2015, 138, 3251-3262.	7.6	50
98	Treating EEG Seizures in Hypoxic Ischemic Encephalopathy: A Randomized Controlled Trial. Pediatrics, 2015, 136, e1302-e1309.	2.1	129
99	Brain Injury and Development in Preterm Infants Exposed to Fentanyl. Annals of Pharmacotherapy, 2015, 49, 1291-1297.	1.9	79
100	An allometric scaling relationship in the brain of preterm infants. Annals of Clinical and Translational Neurology, 2014, 1, 933-937.	3.7	7
101	Early electrographic seizures, brain injury, and neurodevelopmental risk in the very preterm infant. Pediatric Research, 2014, 75, 564-569.	2.3	83
102	The effects of alternative positioning on preterm infants in the neonatal intensive care unit: A randomized clinical trial. Research in Developmental Disabilities, 2014, 35, 490-497.	2.2	63
103	Regional white matter microstructure in very preterm infants: Predictors and 7 year outcomes. Cortex, 2014, 52, 60-74.	2.4	101
104	Brain Injury and Altered Brain Growth in Preterm Infants: Predictors and Prognosis. Pediatrics, 2014, 134, e444-e453.	2.1	308
105	Alterations in Brain Structure and Neurodevelopmental Outcome in Preterm Infants Hospitalized in Different Neonatal Intensive Care Unit Environments. Journal of Pediatrics, 2014, 164, 52-60.e2.	1.8	279
106	Neuroimaging in the Evaluation of Neonatal Encephalopathy. Pediatrics, 2014, 133, e1508-e1517.	2.1	48
107	Cooling for newborns with hypoxic ischaemic encephalopathy. The Cochrane Library, 2013, , CD003311.	2.8	1,088
108	Magnetic resonance imaging of the brain at term equivalent age in extremely premature neonates: To scan or not to scan?. Journal of Paediatrics and Child Health, 2012, 48, 794-800.	0.8	49

#	Article	IF	CITATIONS
109	Prognostic Utility of Magnetic Resonance Imaging in Neonatal Hypoxic-Ischemic Encephalopathy. JAMA Pediatrics, 2012, 166, 634-40.	3.0	138
110	The Vermont oxford neonatal encephalopathy registry: rationale, methods, and initial results. BMC Pediatrics, 2012, 12, 84.	1.7	54
111	Neonatal White Matter Abnormalities an Important Predictor of Neurocognitive Outcome for Very Preterm Children. PLoS ONE, 2012, 7, e51879.	2.5	218
112	Whole-Body Hypothermia for Term and Near-Term Newborns With Hypoxic-Ischemic Encephalopathy. JAMA Pediatrics, 2011, 165, 692.	3.0	528
113	Neonatal intensive care unit stress is associated with brain development in preterm infants. Annals of Neurology, 2011, 70, 541-549.	5.3	418
114	Late preterm infants: not so near to term. Pediatric Health, 2009, 3, 417-419.	0.3	0
115	Magnetic resonance imaging—Insights into brain injury and outcomes in premature infants. Journal of Communication Disorders, 2009, 42, 248-255.	1.5	59
116	Transport, monitoring, and successful brain MR imaging in unsedated neonates. Pediatric Radiology, 2008, 38, 260-264.	2.0	175
117	Neonate hippocampal volumes: Prematurity, perinatal predictors, and 2â€year outcome. Annals of Neurology, 2008, 63, 642-651.	5.3	142
118	Neonatal MRI to Predict Neurodevelopmental Outcomes in Preterm Infants. New England Journal of Medicine, 2006, 355, 685-694.	27.0	1,128
119	Detection of Impaired Growth of the Corpus Callosum in Premature Infants. Pediatrics, 2006, 118, 951-960.	2.1	81
120	Patterns of Cerebral Injury in a Primate Model of Preterm Birth and Neonatal Intensive Care. Journal of Child Neurology, 2005, 20, 965-967.	1.4	31
121	Abnormal Cerebral Structure Is Present at Term in Premature Infants. Pediatrics, 2005, 115, 286-294.	2.1	775
122	Non-human primate models of neonatal brain injury. Seminars in Perinatology, 2004, 28, 396-404.	2.5	25
123	Randomized trial of systemic hypothermia selectively protects the cortex on MRI in term hypoxic-ischemic encephalopathy. Journal of Pediatrics, 2004, 145, 835-837.	1.8	129
124	Defining the nature of the cerebral abnormalities in the premature infant: a qualitative magnetic resonance imaging study. Journal of Pediatrics, 2003, 143, 171-179.	1.8	464
125	Lowered Electroencephalographic Spectral Edge Frequency Predicts the Presence of Cerebral White Matter Injury in Premature Infants. Pediatrics, 2003, 111, 27-33.	2.1	101
126	Elevated Free Radical Products in the Cerebrospinal Fluid of VLBW Infants with Cerebral White Matter Injury. Pediatric Research, 2002, 52, 213-218.	2.3	116

#	Article	IF	CITATIONS
127	Markers of oxidative injury in the cerebrospinal fluid of a premature infant with meningitis and periventricular leukomalacia. Journal of Pediatrics, 2002, 140, 617-621.	1.8	19
128	Elevated Free Radical Products in the Cerebrospinal Fluid of VLBW Infants with Cerebral White Matter Injury. Pediatric Research, 2002, 52, 213-218.	2.3	13