Florian Altegoer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5273455/publications.pdf

Version: 2024-02-01

430754 434063 1,147 33 18 31 citations g-index h-index papers 38 38 38 1533 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Structural insights into the mechanism of archaellar rotational switching. Nature Communications, 2022, 13, .	5.8	1
2	Dual role of a (p)ppGpp―and (p)ppAppâ€degrading enzyme in biofilm formation and interbacterial antagonism. Molecular Microbiology, 2021, 115, 1339-1356.	1.2	18
3	Identification and Characterization of Two Transmembrane Proteins Required for Virulence of Ustilago maydis. Frontiers in Plant Science, 2021, 12, 669835.	1.7	3
4	Structure and mechanistic features of the prokaryotic minimal RNase P. ELife, 2021, 10, .	2.8	15
5	Structural and functional characterization of the bacterial biofilm activator RemA. Nature Communications, 2021, 12, 5707.	5.8	4
6	The CTPase activity of ParB determines the size and dynamics of prokaryotic DNA partition complexes. Molecular Cell, 2021, 81, 3992-4007.e10.	4.5	37
7	The two paralogous kiwellin proteins KWL1 and KWL1-b from maize are structurally related and have overlapping functions in plant defense. Journal of Biological Chemistry, 2020, 295, 7816-7825.	1.6	9
8	Degradation of the microbial stress protectants and chemical chaperones ectoine and hydroxyectoine by a bacterial hydrolase–deacetylase complex. Journal of Biological Chemistry, 2020, 295, 9087-9104.	1.6	15
9	A Proline-Rich Element in the Type III Secretion Protein FlhB Contributes to Flagellar Biogenesis in the Beta- and Gamma-Proteobacteria. Frontiers in Microbiology, 2020, 11, 564161.	1.5	3
10	Biochemical characterization of the Helicobacter pylori bactofilin-homolog HP1542. PLoS ONE, 2019, 14, e0218474.	1.1	6
11	Plants strike back: Kiwellin proteins as a modular toolbox for plant defense mechanisms. Communicative and Integrative Biology, 2019, 12, 31-33.	0.6	8
12	Swimming of bacterium Bacillus subtilis with multiple bundles of flagella. Soft Matter, 2019, 15, 10029-10034.	1.2	4
13	ParB-type DNA Segregation Proteins Are CTP-Dependent Molecular Switches. Cell, 2019, 179, 1512-1524.e15.	13.5	136
14	A kiwellin disarms the metabolic activity of a secreted fungal virulence factor. Nature, 2019, 565, 650-653.	13.7	48
15	Structural and mechanistic divergence of the small (p)ppGpp synthetases RelP and RelQ. Scientific Reports, 2018, 8, 2195.	1.6	51
16	Structure and function of the archaeal response regulator CheY. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1259-E1268.	3.3	43
17	The transcription factor PRO44 and the histone chaperone ASF1 regulate distinct aspects of multicellular development in the filamentous fungus Sordaria macrospora. BMC Genetics, 2018, 19, 112.	2.7	16
18	Flagellar number governs bacterial spreading and transport efficiency. Science Advances, 2018, 4, eaar6425.	4.7	31

#	Article	IF	CITATIONS
19	Structural basis for (p)ppGpp-mediated inhibition of the GTPase RbgA. Journal of Biological Chemistry, 2018, 293, 19699-19709.	1.6	41
20	FliS/flagellin/FliW heterotrimer couples type III secretion and flagellin homeostasis. Scientific Reports, 2018, 8, 11552.	1.6	23
21	AraC-like transcriptional activator CuxR binds c-di-GMP by a PilZ-like mechanism to regulate extracellular polysaccharide production. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4822-E4831.	3.3	58
22	Structural Variation of Type I-F CRISPR RNA Guided DNA Surveillance. Molecular Cell, 2017, 67, 622-632.e4.	4.5	67
23	Crystal Structure of Bacillus subtilis Cysteine Desulfurase SufS and Its Dynamic Interaction with Frataxin and Scaffold Protein SufU. PLoS ONE, 2016, 11, e0158749.	1.1	24
24	Structural basis for the CsrA-dependent modulation of translation initiation by an ancient regulatory protein. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10168-10173.	3.3	41
25	A Synthetic Adenylationâ€Domainâ€Based tRNAâ€Aminoacylation Catalyst. Angewandte Chemie, 2015, 127, 2522-2526.	1.6	2
26	Bacillus subtilis Bactofilins Are Essential for Flagellar Hook- and Filament Assembly and Dynamically Localize into Structures of Less than 100 nm Diameter underneath the Cell Membrane. PLoS ONE, 2015, 10, e0141546.	1.1	15
27	A Synthetic Adenylationâ€Domainâ€Based tRNAâ€Aminoacylation Catalyst. Angewandte Chemie - International Edition, 2015, 54, 2492-2496.	7.2	7
28	Co-translational capturing of nascent ribosomal proteins by their dedicated chaperones. Nature Communications, 2015, 6, 7494.	5.8	63
29	Undiscovered regions on the molecular landscape of flagellar assembly. Current Opinion in Microbiology, 2015, 28, 98-105.	2.3	41
30	Catalytic mechanism and allosteric regulation of an oligomeric (p)ppGpp synthetase by an alarmone. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13348-13353.	3.3	111
31	MinD-like ATPase FlhG effects location and number of bacterial flagella during C-ring assembly. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3092-3097.	3.3	86
32	From molecular evolution to biobricks and synthetic modules: a lesson by the bacterial flagellum. Biotechnology and Genetic Engineering Reviews, 2014, 30, 49-64.	2.4	33
33	The Genome and Development-Dependent Transcriptomes of Pyronema confluens: A Window into Fungal Evolution. PLoS Genetics, 2013, 9, e1003820.	1.5	85