
Fangcai Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5273406/publications.pdf Version: 2024-02-01

ΕλΝΟΟΛΙ ΖΗΕΝΟ

#	Article	IF	CITATIONS
1	High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nature Communications, 2014, 5, 5261.	5.8	1,257
2	Non-precious alloy encapsulated in nitrogen-doped graphene layers derived from MOFs as an active and durable hydrogen evolution reaction catalyst. Energy and Environmental Science, 2015, 8, 3563-3571.	15.6	498
3	MOF-derived ultrafine MnO nanocrystals embedded in a porous carbon matrix as high-performance anodes for lithium-ion batteries. Nanoscale, 2015, 7, 9637-9645.	2.8	226
4	Nano electrochemical reactors of Fe ₂ O ₃ nanoparticles embedded in shells of nitrogen-doped hollow carbon spheres as high-performance anodes for lithium-ion batteries. Nanoscale, 2015, 7, 3410-3417.	2.8	188
5	Metal–organic framework-derived porous Mn _{1.8} Fe _{1.2} O ₄ nanocubes with an interconnected channel structure as high-performance anodes for lithium ion batteries. Journal of Materials Chemistry A, 2015. 3. 2815-2824.	5.2	148
6	Facile Fabrication of Porous Ni _{<i>x</i>} Co _{3–<i>x</i>} O ₄ Nanosheets with Enhanced Electrochemical Performance As Anode Materials for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 9256-9264.	4.0	141
7	Preparation of porous MoO ₂ @C nano-octahedrons from a polyoxometalate-based metal–organic framework for highly reversible lithium storage. Journal of Materials Chemistry A, 2016, 4, 12434-12441.	5.2	83
8	The creation of extra storage capacity in nitrogen-doped porous carbon as high-stable potassium-ion battery anodes. Carbon, 2021, 178, 256-264.	5.4	60
9	Experimental and theoretical investigations of nitro-group doped porous carbon as a high performance lithium-ion battery anode. Journal of Materials Chemistry A, 2015, 3, 18657-18666.	5.2	54
10	Synthesis of ultrafine Co3O4 nanoparticles encapsulated in nitrogen-doped porous carbon matrix as anodes for stable and long-life lithium ion battery. Journal of Alloys and Compounds, 2019, 790, 955-962.	2.8	53
11	MOF-derived hollow NiCo ₂ O ₄ nanowires as stable Li-ion battery anodes. Dalton Transactions, 2020, 49, 10808-10815.	1.6	51
12	Tuning the nitrogen-doping configuration in carbon materials <i>via</i> sulfur doping for ultrastable potassium ion storage. Journal of Materials Chemistry A, 2021, 9, 16150-16159.	5.2	50
13	Porous CuO@C composite as high-performance anode materials for lithium-ion batteries. Dalton Transactions, 2020, 49, 11597-11604.	1.6	47
14	Constructing Graphiticâ€Nitrogenâ€Bonded Pentagons in Interlayerâ€Expanded Graphene Matrix toward Carbonâ€Based Electrocatalysts for Acidic Oxygen Reduction Reaction. Advanced Materials, 2021, 33, e2103133.	11.1	47
15	MOF-derived porous Co 3 O 4 cuboids with excellent performance as anode materials for lithium-ion batteries. Materials Letters, 2017, 197, 188-191.	1.3	40
16	Facile synthesis of MOF-derived Mn ₂ O ₃ hollow microspheres as anode materials for lithium-ion batteries. RSC Advances, 2016, 6, 93532-93538.	1.7	39
17	NiO nanocrystals encapsulated into a nitrogen-doped porous carbon matrix as highly stable Li-ion battery anodes. Journal of Alloys and Compounds, 2021, 854, 157264.	2.8	37
18	Edge-nitrogen enriched carbon nanosheets for potassium-ion battery anodes with an ultrastable cycling stability. Carbon, 2021, 184, 277-286.	5.4	37

Fangcai Zheng

#	Article	IF	CITATIONS
19	Formation of Co 3 O 4 hollow polyhedrons from metal-organic frameworks and their catalytic activity for CO oxidation. Materials Letters, 2016, 182, 214-217.	1.3	32
20	Synergistic Tuning of the Electronic Structure of Mo ₂ C by P and Ni Codoping for Optimizing Electrocatalytic Hydrogen Evolution. Inorganic Chemistry, 2020, 59, 13741-13748.	1.9	28
21	Construction of NiS Nanosheets Anchored on the Inner Surface of Nitrogen-Doped Hollow Carbon Matrixes with Enhanced Sodium and Potassium Storage Performances. ACS Applied Energy Materials, 2021, 4, 662-670.	2.5	27
22	Optimizing the Interlayer Spacing of Heteroatom-Doped Carbon Nanofibers toward Ultrahigh Potassium-Storage Performances. ACS Applied Materials & Interfaces, 2022, 14, 9212-9221.	4.0	27
23	Facile synthesis of MOF-derived ultrafine Co nanocrystals embedded in a nitrogen-doped carbon matrix for the hydrogen evolution reaction. RSC Advances, 2016, 6, 71767-71772.	1.7	24
24	Rational design of a hollow porous structure for enhancing diffusion kinetics of K ions in edge-nitrogen doped carbon nanorods. Nano Research, 2022, 15, 8109-8117.	5.8	24
25	Facile fabrication of highly porous Co ₃ O ₄ nanobelts as anode materials for lithium-ion batteries. RSC Advances, 2016, 6, 9640-9646.	1.7	23
26	Boosting the K ⁺ -adsorption capacity in edge-nitrogen doped hierarchically porous carbon spheres for ultrastable potassium ion battery anodes. Nanoscale, 2021, 13, 19634-19641.	2.8	22
27	Optimizing the nitrogen configuration in interlayer-expanded carbon materials <i>via</i> sulfur-bridged bonds toward remarkable energy storage performances. Journal of Materials Chemistry A, 2022, 10, 10033-10042.	5.2	22
28	Regulating the sodium storage sites in nitrogen-doped carbon materials by sulfur-doping engineering for sodium ion batteries. Electrochimica Acta, 2022, 424, 140645.	2.6	20
29	NiRu nanoparticles encapsulated in a nitrogen-doped carbon matrix as a highly efficient electrocatalyst for the hydrogen evolution reaction. Dalton Transactions, 2020, 49, 13647-13654.	1.6	19
30	A mild reduction of Co-doped MnO ₂ to create abundant oxygen vacancies and active sites for enhanced oxygen evolution reaction. Nanoscale, 2021, 13, 11120-11127.	2.8	17
31	Self-assembly of α-MnO2/Mn3O4 hierarchical structure on carbon cloth for aymmetric supercapacitors. Journal of Materials Science, 2021, 56, 3246-3255.	1.7	12
32	Heteroatom-doped carbon materials with interconnected channels as ultrastable anodes for lithium/sodium ion batteries. Dalton Transactions, 2021, 50, 4335-4344.	1.6	12
33	Facile fabrication of hierarchically porous NiO microspheres as anode materials for lithium ion batteries. Journal of Materials Science: Materials in Electronics, 2016, 27, 3576-3582.	1.1	11
34	Stabilizing V ₂ O ₃ in carbon nanofiber flexible films for ultrastable potassium storage. Inorganic Chemistry Frontiers, 2022, 9, 1434-1445.	3.0	11
35	MOFs-derived MnCo2O4 nanowires with porous structures for lithium-ion battery anodes. Journal of Materials Science: Materials in Electronics, 2019, 30, 16687-16693.	1.1	8
36	Conductive NiMn-based bimetallic metal–organic gel nanosheets for supercapacitors. Materials Advances, 2021, 2, 4362-4369.	2.6	7

#	Article	IF	CITATIONS
37	Tuning the electronic conductivity of porous nitrogen-doped carbon nanofibers with graphene for high-performance potassium-ion storage. Inorganic Chemistry Frontiers, 2021, 8, 3926-3933.	3.0	7
38	Inâ€situ Electrochemical Activation Enhances the OER Catalytic Performance of Ag NWs@ZIFâ€67 in Alkaline Simulated Seawater. ChemistrySelect, 2022, 7, .	0.7	0