Gabriella Campadelli-Fiume

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5273329/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Immunotherapeutic Efficacy of Retargeted oHSVs Designed for Propagation in an Ad Hoc Cell Line. Cancers, 2021, 13, 266.	1.7	7
2	Targeted Delivery of IL-12 Adjuvants Immunotherapy by Oncolytic Viruses. Advances in Experimental Medicine and Biology, 2021, 1290, 67-80.	0.8	10
3	Specificity, Safety, Efficacy of EGFRvIII-Retargeted Oncolytic HSV for Xenotransplanted Human Glioblastoma. Viruses, 2021, 13, 1677.	1.5	5
4	Genotype of Immunologically Hot or Cold Tumors Determines the Antitumor Immune Response and Efficacy by Fully Virulent Retargeted oHSV. Viruses, 2021, 13, 1747.	1.5	6
5	Towards a Precision Medicine Approach and In Situ Vaccination against Prostate Cancer by PSMA-Retargeted oHSV. Viruses, 2021, 13, 2085.	1.5	2
6	Retargeted and Multi-cytokine-Armed Herpes Virus Is a Potent Cancer Endovaccine for Local and Systemic Anti-tumor Treatment. Molecular Therapy - Oncolytics, 2020, 19, 253-264.	2.0	21
7	Replicative conditioning of Herpes simplex type 1 virus by Survivin promoter, combined to ERBB2 retargeting, improves tumour cell-restricted oncolysis. Scientific Reports, 2020, 10, 4307.	1.6	19
8	oHSV Genome Editing by Means of galK Recombineering. Methods in Molecular Biology, 2020, 2060, 131-151.	0.4	5
9	Rescue, Purification, and Characterization of a Recombinant HSV Expressing a Transgenic Protein. Methods in Molecular Biology, 2020, 2060, 153-168.	0.4	5
10	αvβ3-integrin regulates PD-L1 expression and is involved in cancer immune evasion. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20141-20150.	3.3	57
11	Eradication of glioblastoma by immuno-virotherapy with a retargeted oncolytic HSV in a preclinical model. Oncogene, 2019, 38, 4467-4479.	2.6	52
12	Dual Ligand Insertion in gB and gD of Oncolytic Herpes Simplex Viruses for Retargeting to a Producer Vero Cell Line and to Cancer Cells. Journal of Virology, 2018, 92, .	1.5	21
13	Simultaneous Insertion of Two Ligands in gD for Cultivation of Oncolytic Herpes Simplex Viruses in Noncancer Cells and Retargeting to Cancer Receptors. Journal of Virology, 2018, 92, .	1.5	12
14	Spotlight on $\hat{a} \in \$ Gabriella Campadelli-Fiume. FEMS Microbiology Letters, 2018, 365, .	0.7	0
15	HSV as A Platform for the Generation of Retargeted, Armed, and Reporter-Expressing Oncolytic Viruses. Viruses, 2018, 10, 352.	1.5	32
16	A fully-virulent retargeted oncolytic HSV armed with IL-12 elicits local immunity and vaccine therapy towards distant tumors. PLoS Pathogens, 2018, 14, e1007209.	2.1	51
17	A Strategy for Cultivation of Retargeted Oncolytic Herpes Simplex Viruses in Non-cancer Cells. Journal of Virology, 2017, 91, .	1.5	16
18	Insertion of a ligand to HER2 in gB retargets HSV tropism and obviates the need for activation of the other entry glycoproteins. PLoS Pathogens, 2017, 13, e1006352.	2.1	32

#	Article	IF	CITATIONS
19	Retargeting Strategies for Oncolytic Herpes Simplex Viruses. Viruses, 2016, 8, 63.	1.5	41
20	Integrins as Herpesvirus Receptors and Mediators of the Host Signalosome. Annual Review of Virology, 2016, 3, 215-236.	3.0	51
21	αvβ3 Integrin Boosts the Innate Immune Response Elicited in Epithelial Cells through Plasma Membrane and Endosomal Toll-Like Receptors. Journal of Virology, 2016, 90, 4243-4248.	1.5	12
22	Dissociation of HSV gL from gH by αvβ6- or αvβ8-integrin promotes gH activation and virus entry. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3901-10.	3.3	48
23	The Engineering of a Novel Ligand in gH Confers to HSV an Expanded Tropism Independent of gD Activation by Its Receptors. PLoS Pathogens, 2015, 11, e1004907.	2.1	26
24	Systemic delivery of HER2-retargeted oncolytic-HSV by mesenchymal stromal cells protects from lung and brain metastases. Oncotarget, 2015, 6, 34774-34787.	0.8	62
25	The Epithelial αvβ3-Integrin Boosts the MYD88-Dependent TLR2 Signaling in Response to Viral and Bacterial Components. PLoS Pathogens, 2014, 10, e1004477.	2.1	30
26	Type I Interferon and NF-κB Activation Elicited by Herpes Simplex Virus gH/gL via αvβ3 Integrin in Epithelial and Neuronal Cell Lines. Journal of Virology, 2013, 87, 13911-13916.	1.5	39
27	Preclinical Therapy of Disseminated HER-2+ Ovarian and Breast Carcinomas with a HER-2-Retargeted Oncolytic Herpesvirus. PLoS Pathogens, 2013, 9, e1003155.	2.1	36
28	αvβ6- and αvβ8-Integrins Serve As Interchangeable Receptors for HSV gH/gL to Promote Endocytosis and Activation of Membrane Fusion. PLoS Pathogens, 2013, 9, e1003806.	2.1	85
29	Herpes Simplex Virus Glycoproteins gH/gL and gB Bind Toll-Like Receptor 2, and Soluble gH/gL Is Sufficient To Activate NF-1°B. Journal of Virology, 2012, 86, 6555-6562.	1.5	136
30	αVβ3-Integrin Relocalizes nectin1 and Routes Herpes Simplex Virus to Lipid Rafts. Journal of Virology, 2012, 86, 2850-2855.	1.5	41
31	αvβ3-integrin is a major sensor and activator of innate immunity to herpes simplex virus-1. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19792-19797.	3.3	54
32	Replication-competent Herpes Simplex Virus Retargeted to HER2 as Therapy for High-grade Glioma. Molecular Therapy, 2012, 20, 994-1001.	3.7	54
33	The Molecular Basis of Herpesviruses as Oncolytic Agents. Current Pharmaceutical Biotechnology, 2012, 13, 1795-1803.	0.9	4
34	Viral and cellular contributions to herpes simplex virus entry into the cell. Current Opinion in Virology, 2012, 2, 28-36.	2.6	92
35	Rethinking herpes simplex virus: the way to oncolytic agents. Reviews in Medical Virology, 2011, 21, 213-226.	3.9	63
36	Herpes Simplex Virus Glycoproteins H/L Bind to Cells Independently of αVβ3 Integrin and Inhibit Virus Entry, and Their Constitutive Expression Restricts Infection. Journal of Virology, 2010, 84, 4013-4025.	1.5	39

#	Article	IF	CITATIONS
37	Glycoprotein D of Bovine Herpesvirus 5 (BoHV-5) Confers an Extended Host Range to BoHV-1 but Does Not Contribute to Invasion of the Brain. Journal of Virology, 2010, 84, 5583-5593.	1.5	17
38	α _V β ₃ -integrin routes herpes simplex virus to an entry pathway dependent on cholesterol-rich lipid rafts and dynamin2. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22260-22265.	3.3	79
39	Herpes Simplex Virus gD Forms Distinct Complexes with Fusion Executors gB and gH/gL in Part through the C-terminal Profusion Domain. Journal of Biological Chemistry, 2009, 284, 17370-17382.	1.6	84
40	Oncolytic herpes virus retargeted to HER-2. Cell Cycle, 2009, 8, 2859-2860.	1.3	3
41	Inhibition of human tumor growth in mice by an oncolytic herpes simplex virus designed to target solely HER-2-positive cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9039-9044.	3.3	83
42	Cross Talk among the Glycoproteins Involved in Herpes Simplex Virus Entry and Fusion: the Interaction between gB and gH/gL Does Not Necessarily Require gD. Journal of Virology, 2009, 83, 10752-10760.	1.5	59
43	Construction of a Fully Retargeted Herpes Simplex Virus 1 Recombinant Capable of Entering Cells Solely via Human Epidermal Growth Factor Receptor 2. Journal of Virology, 2008, 82, 10153-10161.	1.5	102
44	Entry of alphaherpesviruses into the cell. , 2007, , 93-111.		15
45	Complexes between Herpes Simplex Virus Clycoproteins gD, gB, and gH Detected in Cells by Complementation of Split Enhanced Green Fluorescent Protein. Journal of Virology, 2007, 81, 11532-11537.	1.5	101
46	Intracellular Trafficking and Maturation of Herpes Simplex Virus Type 1 gB and Virus Egress Require Functional Biogenesis of Multivesicular Bodies. Journal of Virology, 2007, 81, 11468-11478.	1.5	107
47	Introduction to the human Î ³ -herpesviruses. , 2007, , 341-359.		18
48	The multipartite system that mediates entry of herpes simplex virus into the cell. Reviews in Medical Virology, 2007, 17, 313-326.	3.9	128
49	A Herpes Simplex Virus Recombinant That Exhibits a Single-Chain Antibody to HER2/neu Enters Cells through the Mammary Tumor Receptor, Independently of the gD Receptors. Journal of Virology, 2006, 80, 5531-5539.	1.5	49
50	Heptad Repeat 2 in Herpes Simplex Virus 1 gH Interacts with Heptad Repeat 1 and Is Critical for Virus Entry and Fusion. Journal of Virology, 2006, 80, 2216-2224.	1.5	43
51	Hydrophobic α-Helices 1 and 2 of Herpes Simplex Virus gH Interact with Lipids, and Their Mimetic Peptides Enhance Virus Infection and Fusion. Journal of Virology, 2006, 80, 8190-8198.	1.5	36
52	The pro-fusion domain of herpes simplex virus glycoprotein D (gD) interacts with the gD N terminus and is displaced by soluble forms of viral receptors. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9323-9328.	3.3	84
53	A Heptad Repeat in Herpes Simplex Virus 1 gH, Located Downstream of the α-Helix with Attributes of a Fusion Peptide, Is Critical for Virus Entry and Fusion. Journal of Virology, 2005, 79, 7042-7049.	1.5	61
54	The Ectodomain of Herpes Simplex Virus Glycoprotein H Contains a Membrane α-Helix with Attributes of an Internal Fusion Peptide, Positionally Conserved in the Herpesviridae Family. Journal of Virology, 2005, 79, 2931-2940.	1.5	74

#	Article	IF	CITATIONS
55	Entry of Herpes Simplex Virus Mediated by Chimeric Forms of Nectin1 Retargeted to Endosomes or to Lipid Rafts Occurs through Acidic Endosomes. Journal of Virology, 2004, 78, 12268-12276.	1.5	81
56	Coexpression of UL20p and gK Inhibits Cell-Cell Fusion Mediated by Herpes Simplex Virus Glycoproteins gD, gH-gL, and Wild-Type gB or an Endocytosis-Defective gB Mutant and Downmodulates Their Cell Surface Expression. Journal of Virology, 2004, 78, 8015-8025.	1.5	44
57	The Herpes Simplex Virus JMP Mutant Enters Receptor-Negative J Cells through a Novel Pathway Independent of the Known Receptors nectin1, HveA, and nectin2. Journal of Virology, 2004, 78, 4720-4729.	1.5	22
58	The soluble ectodomain of herpes simplex virus gD contains a membrane-proximal pro-fusion domain and suffices to mediate virus entry. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7445-7450.	3.3	128
59	Herpes Simplex Virus Glycoprotein K, but Not Its Syncytial Allele, Inhibits Cell-Cell Fusion Mediated by the Four Fusogenic Glycoproteins, gD, gB, gH, and gL. Journal of Virology, 2003, 77, 6836-6844.	1.5	46
60	The Domains of Glycoprotein D Required To Block Apoptosis Induced by Herpes Simplex Virus 1 Are Largely Distinct from Those Involved in Cell-Cell Fusion and Binding to Nectin1. Journal of Virology, 2003, 77, 3759-3767.	1.5	46
61	Critical Residues in the CC′ Ridge of the Human Nectin1 Receptor V Domain Enable Herpes Simplex Virus Entry into the Cell and Act Synergistically with the Downstream Region. Virology, 2002, 301, 6-12.	1.1	11
62	The novel receptors that mediate the entry of herpes simplex viruses and animal alphaherpesviruses into cells. Reviews in Medical Virology, 2000, 10, 305-319.	3.9	234
63	Glycoprotein D or J Delivered in transBlocks Apoptosis in SK-N-SH Cells Induced by a Herpes Simplex Virus 1 Mutant Lacking Intact Genes Expressing Both Glycoproteins. Journal of Virology, 2000, 74, 11782-11791.	1.5	146
64	Nectin2α (PRR2α or HveB) and Nectin2δ Are Low-Efficiency Mediators for Entry of Herpes Simplex Virus Mutants Carrying the Leu25Pro Substitution in Glycoprotein D. Journal of Virology, 2000, 74, 1267-1274.	1.5	126
65	Cell-to-Cell Spread of Wild-Type Herpes Simplex Virus Type 1, but Not of Syncytial Strains, Is Mediated by the Immunoglobulin-Like Receptors That Mediate Virion Entry, Nectin1 (PRR1/HveC/HIgR) and Nectin2 (PRR2/HveB). Journal of Virology, 2000, 74, 3909-3917.	1.5	106
66	The novel receptors that mediate the entry of herpes simplex viruses and animal alphaherpesviruses into cells. Reviews in Medical Virology, 2000, 10, 305-319.	3.9	3
67	The Ectodomain of a Novel Member of the Immunoglobulin Subfamily Related to the Poliovirus Receptor Has the Attributes of a Bona Fide Receptor for Herpes Simplex Virus Types 1 and 2 in Human Cells. Journal of Virology, 1998, 72, 9992-10002.	1.5	274
68	A herpes simplex virus type 1 mutant resistant to benzhydrazone, an inhibitor of glycoprotein synthesis in herpesvirus-infected cells. Preliminary mapping of benzhydrazone-resistance and of a novel syncytial mutation. Archives of Virology, 1988, 98, 199-212.	0.9	15
69	Herpes simplex virus glycoprotein D is sufficient to induce spontaneous pH-independent fusion in a cell line that constitutively expresses the glycoprotein. Virology, 1988, 166, 598-602.	1.1	70
70	Amanitins in virus research. Archives of Virology, 1978, 58, 1-13.	0.9	8