Mauro Cacace

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/527300/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Numerical modeling as a tool for evaluating the renewability of geothermal resources: the case study of the Euganean Geothermal System (NE Italy). Environmental Geochemistry and Health, 2022, 44, 2135-2162.	1.8	9

 $_{2}$ Influences of hydraulic boundary conditions on the deep fluid flow in a 3D regional model (central) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

3	Longâ€∓erm Lithospheric Strength and Upperâ€Plate Seismicity in the Southern Central Andes, 29°–39°S. Geochemistry, Geophysics, Geosystems, 2022, 23, .	1.0	10
4	How Alpine seismicity relates to lithospheric strength. International Journal of Earth Sciences, 2022, 111, 1201-1221.	0.9	3
5	Controls of the Lithospheric Thermal Field of an Ocean-Continent Subduction Zone: The Southern Central Andes. Lithosphere, 2022, 2022, .	0.6	3
6	Hydrogeologic and Thermal Effects of Glaciations on the Intracontinental Basins in Central and Northern Europe. Frontiers in Water, 2022, 4, .	1.0	2
7	Effects of transient processes for thermal simulations of the Central European Basin. Geoscientific Model Development, 2021, 14, 1699-1719.	1.3	2
8	Thermomechanics for Geological, Civil Engineering and Geodynamic Applications: Numerical Implementation and Application to the Bentheim Sandstone. Rock Mechanics and Rock Engineering, 2021, 54, 5337-5354.	2.6	5
9	Hydraulic Diffusivity of a Partially Open Rough Fracture. Rock Mechanics and Rock Engineering, 2021, 54, 5493-5515.	2.6	8
10	Lithospheric strength variations and seismotectonic segmentation below the Sea of Marmara. Tectonophysics, 2021, 815, 228999.	0.9	2
11	Modeling of fluid-induced seismicity during injection and after shut-in. Computers and Geotechnics, 2021, 140, 104489.	2.3	2
12	How biased are our models? – a case study of the alpine region. Geoscientific Model Development, 2021, 14, 7133-7153.	1.3	4
13	Projecting seismicity induced by complex alterations of underground stresses with applications to geothermal systems. Scientific Reports, 2021, 11, 23560.	1.6	12
14	Multiphysics Modeling of a Brittleâ€Ductile Lithosphere: 2. Semiâ€brittle, Semiâ€ductile Deformation and Damage Rheology. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018475.	1.4	13
15	Multiphysics Modeling of a Brittleâ€Ductile Lithosphere: 1. Explicit Viscoâ€Elastoâ€Plastic Formulation and Its Numerical Implementation. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018474.	1.4	17
16	The 3D thermal field across the Alpine orogen and its forelands and the relation to seismicity. Global and Planetary Change, 2020, 193, 103288.	1.6	14
17	Influence of Lithosphere Rheology on Seismicity in an Intracontinental Rift: The Case of the Rhine Graben. Frontiers in Earth Science, 2020, 8,	0.8	7
18	Unravelling the lithospheric-scale thermal field of the North Patagonian Massif plateau (Argentina) and its relations to the topographic evolution of the area. International Journal of Earth Sciences, 2020, 110, 2315.	0.9	0

MAURO CACACE

#	Article	IF	CITATIONS
19	Fault Control on a Thermal Anomaly: Conceptual and Numerical Modeling of a Lowâ€Temperature Geothermal System in the Southern Alps Foreland Basin (NE Italy). Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB017394.	1.4	7
20	Surface to Groundwater Interactions beneath the City of Berlin: Results from 3D Models. Geofluids, 2019, 2019, 1-22.	0.3	7
21	Influence of the Main Border Faults on the 3D Hydraulic Field of the Central Upper Rhine Graben. Geofluids, 2019, 2019, 1-21.	0.3	19
22	The Effects of Regional Fluid Flow on Deep Temperatures (Hesse, Germany). Energies, 2019, 12, 2081.	1.6	10
23	HT (Convection) Processes. Terrestrial Environmental Sciences, 2018, , 157-177.	0.5	0
24	Far field poroelastic response of geothermal reservoirs to hydraulic stimulation treatment: Theory and application at the Groß SchA¶nebeck geothermal research facility. International Journal of Rock Mechanics and Minings Sciences, 2018, 110, 316-327.	2.6	14
25	Evaluating Micro-Seismic Events Triggered by Reservoir Operations at the Geothermal Site of Groß Schönebeck (Germany). Rock Mechanics and Rock Engineering, 2018, 51, 3265-3279.	2.6	31
26	Thermal solar energy storage in Jurassic aquifers in Northeastern Germany: A simulation study. Renewable Energy, 2017, 104, 290-306.	4.3	18
27	Overcoming Spatial Scales in Geothermal Modelling for Urban Areas. Energy Procedia, 2017, 125, 98-105.	1.8	3
28	Processes Responsible for Localized Deformation within Porous Rocks: Insights from Laboratory Experiments and Numerical Modeling. , 2017, , .		2
29	Thermal convection of viscous fluids in a faulted system: 3D benchmark for numerical codes. Energy Procedia, 2017, 125, 310-317.	1.8	5
30	Modelling coupled fluid flow and heat transfer in fractured reservoirs: description of a 3D benchmark numerical case. Energy Procedia, 2017, 125, 612-621.	1.8	7
31	Geoenergy Modeling III. SpringerBriefs in Energy, 2017, , .	0.2	8
32	Backward modelling of the subsidence evolution of the Colorado Basin, offshore Argentina and its relation to the evolution of the conjugate Orange Basin, offshore SW Africa. Tectonophysics, 2017, 716, 168-181.	0.9	11
33	Flexible parallel implicit modelling of coupled thermal–hydraulic–mechanical processes in fractured rocks. Solid Earth, 2017, 8, 921-941.	1.2	66
34	The Kenya rift revisited: insights into lithospheric strength through data-driven 3-D gravity and thermal modelling. Solid Earth, 2017, 8, 45-81.	1.2	47
35	Case Study: Groß Schönebeck. SpringerBriefs in Energy, 2017, , 47-73.	0.2	0
36	Gas Hydrate Stability Zone of the Barents Sea and Kara Sea Region. Energy Procedia, 2016, 97, 302-309.	1.8	16

MAURO CACACE

#	Article	IF	CITATIONS
37	The Geothermal Field Below the City of Berlin, Germany: Results from Structurally and Parametrically Improved 3D Models. Energy Procedia, 2016, 97, 334-341.	1.8	6
38	Permeability distribution in the Lahendong geothermal field: A blind fault captured by thermal–hydraulic simulation. Environmental Earth Sciences, 2016, 75, 1.	1.3	18
39	The application of inverse modeling in characterizing hydraulic conductivity beneath the city of Berlin, Germany. Environmental Earth Sciences, 2016, 75, 1.	1.3	2
40	Coupled thermo-mechanical 3D subsidence analysis along the SW African passive continental margin. Arabian Journal of Geosciences, 2016, 9, 1.	0.6	7
41	Why intracontinental basins subside longer: 3â€D feedback effects of lithospheric cooling and sedimentation on the flexural strength of the lithosphere. Journal of Geophysical Research: Solid Earth, 2016, 121, 3742-3761.	1.4	29
42	Thermo-poroelastic numerical modelling for enhanced geothermal system performance: Case study of the Groğ Schönebeck reservoir. Tectonophysics, 2016, 684, 119-130.	0.9	29
43	Hydro-Mechanical Evolution of Transport Properties in Porous Media: Constraints for Numerical Simulations. Transport in Porous Media, 2015, 110, 409-428.	1.2	9
44	Sensitivity of a 3D Geothermal Model of Berlin with Respect to Upper Boundary Conditions. Energy Procedia, 2015, 76, 291-300.	1.8	8
45	Numerical Investigation of Thermoelastic Effects on Fault Slip Tendency during Injection and Production of Geothermal Fluids. Energy Procedia, 2015, 76, 311-320.	1.8	34
46	Evaluation of three exploitation concepts for a deep geothermal system in the North German Basin. Computers and Geosciences, 2015, 82, 120-129.	2.0	24
47	Reconstruction of the southwestern African continental margin by backward modeling. Marine and Petroleum Geology, 2015, 67, 544-555.	1.5	25
48	MeshIt—a software for three dimensional volumetric meshing of complex faulted reservoirs. Environmental Earth Sciences, 2015, 74, 5191-5209.	1.3	36
49	Models of heat transport in the Central European Basin System: Effective mechanisms at different scales. Marine and Petroleum Geology, 2014, 55, 315-331.	1.5	41
50	Influence of major fault zones on 3-D coupled fluid and heat transport for the Brandenburg region (NE German Basin). Geothermal Energy Science, 2014, 2, 1-20.	1.1	29
51	Deep 3D thermal modelling for the city of Berlin (Germany). Environmental Earth Sciences, 2013, 70, 3545-3566.	1.3	32
52	Controls on the deep thermal field: implications from 3-D numerical simulations for the geothermal research site Groß Schönebeck. Environmental Earth Sciences, 2013, 70, 3619-3642.	1.3	25
53	Impact of single inclined faults on the fluid flow and heat transport: results from 3-D finite element simulations. Environmental Earth Sciences, 2013, 70, 3603-3618.	1.3	33
54	Influence of fluid flow on the regional thermal field: results from 3D numerical modelling for the area of Brandenburg (North German Basin). Environmental Earth Sciences, 2013, 70, 3523-3544.	1.3	39

MAURO CACACE

#	Article	IF	CITATIONS
55	3D coupled fluid and heat transport simulations of the Northeast German Basin and their sensitivity to the spatial discretization: different sensitivities for different mechanisms of heat transport. Environmental Earth Sciences, 2013, 70, 3643-3659.	1.3	23
56	Modelling the Surface Heat Flow Distribution in the Area of Brandenburg (Northern Germany). Energy Procedia, 2013, 40, 545-553.	1.8	6
57	Modelling of fractured carbonate reservoirs: outline of a novel technique via a case study from the Molasse Basin, southern Bavaria, Germany. Environmental Earth Sciences, 2013, 70, 3585-3602.	1.3	61
58	Quaternary channels within the Northeast German Basin and their relevance on double diffusive convective transport processes: Constraints from $3\widehat{a}\in D$ thermohaline numerical simulations. Geochemistry, Geophysics, Geosystems, 2013, 14, 3156-3175.	1.0	8
59	Sensitivity of 3D thermal models to the choice of boundary conditions and thermal properties: a case study for the area of Brandenburg (NE German Basin). Environmental Earth Sciences, 2012, 67, 1695-1711.	1.3	37
60	Characterization of main heat transport processes in the Northeast German Basin: Constraints from 3-D numerical models. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	1.0	31
61	Geothermal Modelling of Sedimentary Basins - An Integrated Approach at Different Scales. , 2011, , .		0
62	Three dimensional modelling of fractured and faulted reservoirs: Framework and implementation. Chemie Der Erde, 2010, 70, 145-153.	0.8	22
63	Geothermal energy in sedimentary basins: What we can learn from regional numerical models. Chemie Der Erde, 2010, 70, 33-46.	0.8	40
64	Late Cretaceous–Early Tertiary tectonic evolution of the Central European Basin System (CEBS): Constraints from numerical modelling. Tectonophysics, 2009, 470, 105-128.	0.9	4
65	Strain localization due to structural in-homogeneities in the Central European Basin System. International Journal of Earth Sciences, 2008, 97, 899-913.	0.9	7
66	Strain and Temperature an Space and Time. , 2008, , 36-153.		3
67	Modelling of multi-lateral well geometries forÂgeothermalÂapplications. Advances in Geosciences, 0, 45, 209-215.	12.0	15
68	Regional hydraulic model of the Upper Rhine Graben. Advances in Geosciences, 0, 49, 197-206.	12.0	9
69	A three-dimensional lithospheric-scale thermal model of Germany. Advances in Geosciences, 0, 49, 225-234.	12.0	6
70	Boundary condition control on inter-aquifer flow in the subsurface of Berlin (Germany) – new insights from 3-D numerical modelling. Advances in Geosciences, 0, 49, 9-18.	12.0	3
71	Permeability of matrix-fracture systems under mechanical loading – constraints from laboratory experiments and 3-D numerical modelling. Advances in Geosciences, 0, 49, 95-104.	12.0	18
72	3-D Simulations of Groundwater Utilization in an Urban Catchment of Berlin, Germany. Advances in Geosciences, 0, 45, 177-184.	12.0	2