Chuanxi Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5272647/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A hydrothermal route to water-stable luminescent carbon dots as nanosensors for pH and temperature. Carbon, 2015, 82, 87-95.	10.3	382
2	Facile Approach in Fabricating Superhydrophobic and Superoleophilic Surface for Water and Oil Mixture Separation. ACS Applied Materials & Interfaces, 2009, 1, 2613-2617.	8.0	341
3	Protein-directed synthesis of pH-responsive red fluorescent copper nanoclusters and their applications in cellular imaging and catalysis. Nanoscale, 2014, 6, 1775-1781.	5.6	221
4	Tunable Carbon-Dot-Based Dual-Emission Fluorescent Nanohybrids for Ratiometric Optical Thermometry in Living Cells. ACS Applied Materials & amp; Interfaces, 2016, 8, 6621-6628.	8.0	180
5	An acetone gas sensor based on nanosized Pt-loaded Fe2O3 nanocubes. Sensors and Actuators B: Chemical, 2019, 290, 59-67.	7.8	172
6	Colloidal synthesis of MoS ₂ quantum dots: size-dependent tunable photoluminescence and bioimaging. New Journal of Chemistry, 2015, 39, 8492-8497.	2.8	170
7	Facile Aqueousâ€Phase Synthesis of Biocompatible and Fluorescent Ag ₂ S Nanoclusters for Bioimaging: Tunable Photoluminescence from Red to Near Infrared. Small, 2012, 8, 3137-3142.	10.0	142
8	Polyethyleneimineâ€Functionalized Fluorescent Carbon Dots: Water Stability, pH Sensing, and Cellular Imaging. ChemNanoMat, 2015, 1, 122-127.	2.8	117
9	Papain-directed synthesis of luminescent gold nanoclusters and the sensitive detection of Cu2+. Journal of Colloid and Interface Science, 2013, 396, 63-68.	9.4	112
10	Facile sonochemical synthesis of pH-responsive copper nanoclusters for selective and sensitive detection of Pb ²⁺ in living cells. Analyst, The, 2015, 140, 5634-5639.	3.5	100
11	A Galvanic Replacement Route to Prepare Strongly Fluorescent and Highly Stable Gold Nanodots for Cellular Imaging. Small, 2013, 9, 413-420.	10.0	99
12	RedÂemitting and highly stable carbon dots with dual response to pHÂvalues and ferric ions. Mikrochimica Acta, 2018, 185, 83.	5.0	94
13	Concentration-dependent color tunability of nitrogen-doped carbon dots and their application for iron(III) detection and multicolor bioimaging. Journal of Colloid and Interface Science, 2018, 521, 33-41.	9.4	92
14	Green Synthesis of Redâ€Emitting Carbon Nanodots as a Novel "Turnâ€on―Nanothermometer in Living Cells. Chemistry - A European Journal, 2016, 22, 14475-14479.	3.3	88
15	One-step synthesis of water-soluble and highly fluorescent MoS2 quantum dots for detection of hydrogen peroxide and glucose. Sensors and Actuators B: Chemical, 2017, 252, 183-190.	7.8	81
16	Glutathione modified carbon-dots: from aggregation-induced emission enhancement properties to a "turn-on―sensing of temperature/Fe ³⁺ ions in cells. Inorganic Chemistry Frontiers, 2016, 3, 514-522.	6.0	78
17	Fluorescent Silver Nanoclusters as Effective Probes for Highly Selective Detection of Mercury(II) at Partsâ€perâ€Billion Levels. Chemistry - an Asian Journal, 2012, 7, 1652-1656.	3.3	74
18	Nitrogen-Doped Carbon Dots Increased Light Conversion and Electron Supply to Improve the Corn Photosystem and Yield. Environmental Science & Technology, 2021, 55, 12317-12325.	10.0	67

#	Article	IF	CITATIONS
19	Preparation of raspberry-like polypyrrole composites with applications in catalysis. Journal of Colloid and Interface Science, 2009, 338, 573-577.	9.4	66
20	A Simple Reducing Approach Using Amine To Give Dual Functional EuSe Nanocrystals and Morphological Tuning. Angewandte Chemie - International Edition, 2011, 50, 7587-7591.	13.8	61
21	One-step hydrothermal synthesis of flowerlike MoS ₂ /CdS heterostructures for enhanced visible-light photocatalytic activities. RSC Advances, 2015, 5, 15621-15626.	3.6	60
22	Elemental Sulfur Nanoparticles Enhance Disease Resistance in Tomatoes. ACS Nano, 2021, 15, 11817-11827.	14.6	60
23	Photoluminescent Smart Hydrogels with Reversible and Linear Thermoresponses. Small, 2010, 6, 2673-2677.	10.0	59
24	Near infrared Ag/Au alloy nanoclusters: Tunable photoluminescence and cellular imaging. Journal of Colloid and Interface Science, 2014, 416, 274-279.	9.4	58
25	Foliar Application with Iron Oxide Nanomaterials Stimulate Nitrogen Fixation, Yield, and Nutritional Quality of Soybean. ACS Nano, 2022, 16, 1170-1181.	14.6	56
26	Temperature-controlled spectral tuning of full-color carbon dots and their strongly fluorescent solid-state polymer composites for light-emitting diodes. Nanoscale Advances, 2019, 1, 1413-1420.	4.6	54
27	Yellow-emitting carbon-dots-impregnated carboxy methyl cellulose/poly-vinyl-alcohol and chitosan: stable, freestanding, enhanced-quenching Cu ²⁺ -ions sensor. Journal of Materials Chemistry C, 2018, 6, 4508-4515.	5.5	51
28	Ratiometric fluorescence detection of trace water in organic solvents based on aggregation-induced emission enhanced Cu nanoclusters. Analyst, The, 2018, 143, 3068-3074.	3.5	51
29	Rapid Sonochemical Synthesis of Luminescent and Paramagnetic Copper Nanoclusters for Bimodal Bioimaging. ChemNanoMat, 2015, 1, 27-31.	2.8	50
30	<scp>d</scp> -Penicillamine-coated Cu/Ag alloy nanocluster superstructures: aggregation-induced emission and tunable photoluminescence from red to orange. Nanoscale, 2018, 10, 1631-1640.	5.6	50
31	Microwaveâ€Assisted Rapid Synthesis of Amphibious Yellow Fluorescent Carbon Dots as a Colorimetric Nanosensor for Cr(VI). Particle and Particle Systems Characterization, 2015, 32, 1058-1062.	2.3	49
32	Interfacing a Tetraphenylethene Derivative and a Smart Hydrogel for Temperature-Dependent Photoluminescence with Sensitive Thermoresponse. ACS Applied Materials & Interfaces, 2014, 6, 4650-4657.	8.0	47
33	Controlled Formation of TiO ₂ /MoS ₂ Core–Shell Heterostructures with Enhanced Visible‣ight Photocatalytic Activities. Particle and Particle Systems Characterization, 2016, 33, 221-227.	2.3	45
34	Centrifugation-Induced Water-Tunable Photonic Colloidal Crystals with Narrow Diffraction Bandwidth and Highly Sensitive Detection of SCN [–] . ACS Applied Materials & Interfaces, 2013, 5, 1990-1996.	8.0	41
35	Morphology-controlled synthesis of TiO ₂ /MoS ₂ nanocomposites with enhanced visible-light photocatalytic activity. Inorganic Chemistry Frontiers, 2018, 5, 145-152.	6.0	40
36	Robust diamond meshes with unique wettability properties. Chemical Communications, 2014, 50, 2900.	4.1	39

7.8

25

#	Article	IF	CITATIONS
37	Stable Ag nanoclusters-based nano-sensors: Rapid sonochemical synthesis and detecting Pb2+ in living cells. Sensors and Actuators B: Chemical, 2017, 238, 1136-1143.	7.8	39
38	Photosynthetic response mechanisms in typical C3 and C4 plants upon La ₂ O ₃ nanoparticle exposure. Environmental Science: Nano, 2020, 7, 81-92.	4.3	39
39	Nanoclusters prepared from a silver/gold alloy as a fluorescent probe for selective and sensitive determination of lead(II). Mikrochimica Acta, 2015, 182, 695-701.	5.0	38
40	Foliar carbon dot amendment modulates carbohydrate metabolism, rhizospheric properties and drought tolerance in maize seedling. Science of the Total Environment, 2022, 809, 151105.	8.0	38
41	CuO nanoparticles doping recovered the photocatalytic antialgal activity of graphitic carbon nitride. Journal of Hazardous Materials, 2021, 403, 123621.	12.4	35
42	Foliar-applied cerium oxide nanomaterials improve maize yield under salinity stress: Reactive oxygen species homeostasis and rhizobacteria regulation. Environmental Pollution, 2022, 299, 118900.	7.5	35
43	A novel fluorescent polymer brushes film as a device for ultrasensitive detection of TNT. Journal of Materials Chemistry A, 2013, 1, 1201-1206.	10.3	33
44	Tunable near-infrared fluorescent gold nanoclusters: temperature sensor and targeted bioimaging. New Journal of Chemistry, 2017, 41, 5412-5419.	2.8	33
45	Gold nanoparticle-enhanced near infrared fluorescent nanocomposites for targeted bio-imaging. RSC Advances, 2015, 5, 20-26.	3.6	31
46	Surface state-controlled C-dot/C-dot based dual-emission fluorescent nanothermometers for intra-cellular thermometry. Nanoscale, 2018, 10, 21809-21817.	5.6	31
47	Polycation-functionalized gold nanodots with tunable near-infrared fluorescence for simultaneous gene delivery and cell imaging. Nano Research, 2018, 11, 2392-2404.	10.4	30
48	A dual emission nanocomposite prepared from copper nanoclusters and carbon dots as a ratiometric fluorescent probe for sulfide and gaseousÂH2S. Mikrochimica Acta, 2019, 186, 258.	5.0	30
49	Dual-emitting quantum dot/carbon nanodot-based nanoprobe for selective and sensitive detection of Fe ³⁺ in cells. Analyst, The, 2016, 141, 4488-4494.	3.5	29
50	Onâ~offâ~on gold nanocluster-based near infrared fluorescent probe for recognition of Cu(II) and vitamin C. Mikrochimica Acta, 2017, 184, 1315-1324.	5.0	28
51	Holey Sheets of Interconnected Carbon-Coated Nickel Nitride Nanoparticles as Highly Active and Durable Oxygen Evolution Electrocatalysts. ACS Applied Energy Materials, 2018, 1, 6774-6780.	5.1	28
52	Multiomics understanding of improved quality in cherry radish (Raphanus sativus L. var. radculus) Tj ETQq0 0 0 r 153712.	gBT /Overl 8.0	ock 10 Tf 50 27
53	Molecular Mechanisms of Early Flowering in Tomatoes Induced by Manganese Ferrite (MnFe ₂ O ₄) Nanomaterials. ACS Nano, 2022, 16, 5636-5646.	14.6	26

Large-scale synthesis of dual-emitting-based visualization sensing paper for humidity and ethanol detection. Sensors and Actuators B: Chemical, 2019, 282, 9-15.

#	Article	IF	CITATIONS
55	The molecular mechanisms of silica nanomaterials enhancing the rice (Oryza sativa L.) resistance to planthoppers (Nilaparvata lugens Stal). Science of the Total Environment, 2021, 767, 144967.	8.0	23
56	Downregulation of the photosynthetic machinery and carbon storage signaling pathways mediate La2O3 nanoparticle toxicity on radish taproot formation. Journal of Hazardous Materials, 2021, 411, 124971.	12.4	23
57	Large Scale Synthesis of Highly Stable Fluorescent Carbon Dots Using Silica Spheres as Carriers for Targeted Bioimaging of Cancer Cells. Particle and Particle Systems Characterization, 2015, 32, 944-951.	2.3	20
58	MoS ₂ â€QDâ€Based Dualâ€Model Photoluminescence Sensing Platform for Effective Determination of Al ³⁺ and Fe ³⁺ Simultaneously in Various Environment. ChemistrySelect, 2018, 3, 2326-2331.	1.5	19
59	Gold lusterâ€Based Dualâ€Emission Nanocomposite Film as Ratiometric Fluorescent Sensing Paper for Specific Metal Ion. Particle and Particle Systems Characterization, 2018, 35, 1700471.	2.3	19
60	Copper nanoclusters promote tomato (Solanum lycopersicum L.) yield and quality through improving photosynthesis and roots growth. Environmental Pollution, 2021, 289, 117912.	7.5	19
61	Mechanisms of growth-promotion and Se-enrichment in <i>Brassica chinensis</i> L. by selenium nanomaterials: beneficial rhizosphere microorganisms, nutrient availability, and photosynthesis. Environmental Science: Nano, 2022, 9, 302-312.	4.3	18
62	Gold nanoclusters based dual-emission hollow TiO ₂ microsphere for ratiometric optical thermometry. RSC Advances, 2015, 5, 61586-61592.	3.6	17
63	Stable Fluorescence of Greenâ€Emitting Carbon Nanodots as a Potential Nanothermometer in Biological Media. Particle and Particle Systems Characterization, 2017, 34, 1600197.	2.3	17
64	A simple and general approach for the decoration of interior surfaces of silica hollow microspheres with noble metal nanoparticles and their application in catalysis. Inorganic Chemistry Frontiers, 2017, 4, 1634-1641.	6.0	16
65	Variety-dependent responses of rice plants with differential cadmium accumulating capacity to cadmium telluride quantum dots (CdTe QDs): Cadmium uptake, antioxidative enzyme activity, and gene expression. Science of the Total Environment, 2019, 697, 134083.	8.0	16
66	Metal Nanoclusters–Based Ratiometric Fluorescent Probes from Design to Sensing Applications. Particle and Particle Systems Characterization, 2019, 36, 1900298.	2.3	14
67	Divalent Europium Nanocrystals: Controllable Synthesis, Properties, and Applications. ChemPhysChem, 2012, 13, 3765-3772.	2.1	13
68	Fluorescence-Magnetism Functional EuS Nanocrystals with Controllable Morphologies for Dual Bioimaging. ACS Applied Materials & amp; Interfaces, 2016, 8, 33539-33545.	8.0	13
69	Facile fabrication of PS/Fe ₃ O ₄ @PANi nanocomposite particles and their application for the effective removal of Cu ²⁺ . New Journal of Chemistry, 2017, 41, 14137-14144.	2.8	13
70	Cell Walls Are Remodeled to Alleviate nY ₂ O ₃ Cytotoxicity by Elaborate Regulation of <i>de Novo</i> Synthesis and Vesicular Transport. ACS Nano, 2021, 15, 13166-13177.	14.6	13
71	Simple surface-assisted formation of palladium nanoparticles on polystyrene microspheres and their application in catalysis. Inorganic Chemistry Frontiers, 2018, 5, 1133-1138.	6.0	12
72	A facile strategy for the synthesis of ferroferric oxide/titanium dioxide/molybdenum disulfide heterostructures as a magnetically separable photocatalyst under visible-light. Journal of Colloid and Interface Science, 2018, 516, 138-144.	9.4	12

#	Article	IF	CITATIONS
73	Nitrogen-doped carbon dots alleviate the damage from tomato bacterial wilt syndrome: systemic acquired resistance activation and reactive oxygen species scavenging. Environmental Science: Nano, 2021, 8, 3806-3819.	4.3	12
74	Patterns of conducting polypyrrole with tunable morphologies. Polymer, 2009, 50, 3938-3942.	3.8	9
75	Ultrahydrophobicity of ZnO modified CVD diamond films. Applied Surface Science, 2013, 270, 260-266.	6.1	9
76	One-Step Fabrication of Fluorescent Carbon Dots for Selective and Sensitive Detection of Cr (VI) in Living Cells. Nano, 2016, 11, 1650012.	1.0	9
77	<i>In situ</i> synthesis of stretchable and highly stable multi-color carbon-dots/polyurethane composite films for light-emitting devices. RSC Advances, 2020, 10, 1281-1286.	3.6	9
78	Selenium content and nutritional quality of Brassica chinensis L enhanced by selenium engineered nanomaterials: The role of surface charge. Environmental Pollution, 2022, 308, 119582.	7.5	9
79	Fluorescent small Au nanodots prepared from large Ag nanoparticles for targeting and imaging cancer cells. RSC Advances, 2015, 5, 52088-52094.	3.6	8
80	Nanomaterial-induced modulation of hormonal pathways enhances plant cell growth. Environmental Science: Nano, 2022, 9, 1578-1590.	4.3	8
81	Tunable luminescence in full color region based on CdSe/EuxSey hybrid nanocrystals. RSC Advances, 2013, 3, 22849.	3.6	7
82	Fluorescent g-C3N4 nanosheets enhanced photosynthetic efficiency in maize. NanoImpact, 2021, 24, 100363.	4.5	7
83	Facile Morphologyâ€Tunable Preparation of CuS@MoS2Heterostructures Based on Template Solvothermal Method. ChemistrySelect, 2020, 5, 360-368.	1.5	6
84	Biocompatible Glutathione Capped Functionalized Carbon Dots as Nanosensors for the Detection of Silver Nanoparticles in Aqueous Solution and Human Cells as well as Bacterial Cells. ChemistrySelect, 2016, 1, 4092-4100.	1.5	5
85	Triiron Tetrairon Phosphate (Fe7(PO4)6) Nanomaterials Enhanced Flavonoid Accumulation in Tomato Fruits. Nanomaterials, 2022, 12, 1341.	4.1	5
86	High Stability and Strong Fluorescence of Carbon Nanodots as Nanosensor for Hg2+ in Environmental Waters. Bulletin of Environmental Contamination and Toxicology, 2020, 104, 57-63.	2.7	4
87	ONE-STEP SYNTHESIS OF BIOCOMPATIBLE CHITOSAN/NaGdF4:Eu3+ NANOCOMPOSITE WITH FLUORESCENT AND MAGNETIC PROPERTIES FOR BIOIMAGING. Nano, 2014, 09, 1450007.	1.0	3
88	Non-injection and one-pot approach to CdSe: Eu3+ hybrid nanocrystals with tunable photoluminescence from green to red. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	3
89	Largeâ€Scale Synthesis of Flexible, Stable, and Transparent MoS ₂ Quantum Dotsâ€Polyvinyl Alcohol Sensing Film. Particle and Particle Systems Characterization, 2018, 35, 1800189.	2.3	3
90	Metal Nanoclusters: Metal Nanoclustersâ€Based Ratiometric Fluorescent Probes from Design to Sensing Applications (Part. Part. Syst. Charact. 11/2019). Particle and Particle Systems Characterization, 2019, 36, 1970031.	2.3	2

#	Article	IF	CITATIONS
91	ONE-STEP COLLOID CHEMICAL ROUTE TO PREPARE HETEROSTRUCTURE EuSe/Ag NANOPARTICLES FOR LUMINESCENCE RESONANCE ENERGY TRANSFER SENSORS. Nano, 2014, 09, 1450030.	1.0	0
92	Carbon Dots: Large Scale Synthesis of Highly Stable Fluorescent Carbon Dots Using Silica Spheres as Carriers for Targeted Bioimaging of Cancer Cells (Part. Part. Syst. Charact. 10/2015). Particle and Particle Systems Characterization, 2015, 32, 980-980.	2.3	0
93	Nano-TiO ₂ retarded fetal development by inhibiting transplacental transfer of thyroid hormones in rat. Environmental Science: Nano, 0, , .	4.3	0