Huiming Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5272551/publications.pdf

Version: 2024-02-01

623734 713466 22 581 14 21 h-index citations g-index papers 22 22 22 686 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Differential Accumulation and Elimination Behavior of Perfluoroalkyl Acid Isomers in Occupational Workers in a Manufactory in China. Environmental Science & Technology, 2015, 49, 6953-6962.	10.0	131
2	The occurrence of PFAS in human placenta and their binding abilities to human serum albumin and organic anion transporter 4. Environmental Pollution, 2021, 273, 116460.	7.5	57
3	Screening of Potential PFOS Alternatives To Decrease Liver Bioaccumulation: Experimental and Computational Approaches. Environmental Science & Environmental Env	10.0	49
4	Experimental and computational insights on the recognition mechanism between the estrogen receptor \hat{l}_{\pm} with bisphenol compounds. Archives of Toxicology, 2017, 91, 3897-3912.	4.2	40
5	In silico approach to investigating the adsorption mechanisms of short chain perfluorinated sulfonic acids and perfluorooctane sulfonic acid on hydrated hematite surface. Water Research, 2017, 114, 144-150.	11.3	39
6	Effect of Enterohepatic Circulation on the Accumulation of Per- and Polyfluoroalkyl Substances: Evidence from Experimental and Computational Studies. Environmental Science & Experimental and Computational Studies. Environmental Science & Experimental S	10.0	35
7	Molecular interaction of PCB153 to human serum albumin: Insights from spectroscopic and molecular modeling studies. Journal of Hazardous Materials, 2013, 248-249, 313-321.	12.4	31
8	Evaluation of the Estrogenic/Antiestrogenic Activities of Perfluoroalkyl Substances and Their Interactions with the Human Estrogen Receptor by Combining <i>In Vitro</i> Assays and <i>In Silico</i> Modeling. Environmental Science & Environmental S	10.0	28
9	Estrogenic activity of benzotriazole UV stabilizers evaluated through in vitro assays and computational studies. Science of the Total Environment, 2020, 727, 138549.	8.0	20
10	Anti-estrogenic activity of tris(2,3-dibromopropyl) isocyanurate through disruption of co-activator recruitment: experimental and computational studies. Archives of Toxicology, 2018, 92, 1471-1482.	4.2	19
11	Understanding the microscopic binding mechanism of hydroxylated and sulfated polybrominated diphenyl ethers with transthyretin by molecular docking, molecular dynamics simulations and binding free energy calculations. Molecular BioSystems, 2017, 13, 736-749.	2.9	18
12	Synthesis and biological evaluation of a series of podophyllotoxins derivatives as a class of potent antitubulin agents. Bioorganic and Medicinal Chemistry, 2012, 20, 6285-6295.	3.0	16
13	Application of a Novel Coarse-Grained Soil Organic Matter Model in the Environment. Environmental Science & Environmental Scie	10.0	16
14	Exploring the origin of efficient adsorption of poly- and perfluoroalkyl substances in household point-of-use water purifiers: Deep insights from a joint experimental and computational study. Science of the Total Environment, 2022, 831, 154988.	8.0	16
15	Structure-Oriented Research on the Antiestrogenic Effect of Organophosphate Esters and the Potential Mechanism. Environmental Science & Eamp; Technology, 2020, 54, 14525-14534.	10.0	14
16	Computational insights on agonist and antagonist mechanisms of estrogen receptor \hat{l}_{\pm} induced by bisphenol A analogues. Environmental Pollution, 2019, 248, 536-545.	7.5	13
17	Protonation state effects of estrogen receptor $\hat{l}\pm$ on the recognition mechanisms by perfluorooctanoic acid and perfluorooctane sulfonate: A computational study. Ecotoxicology and Environmental Safety, 2019, 171, 647-656.	6.0	11
18	4-Hexylphenol influences adipogenic differentiation and hepatic lipid accumulation inÂvitro. Environmental Pollution, 2021, 268, 115635.	7.5	10

Huiming Cao

#	Article	IF	CITATION
19	Insight into the defluorination ability of per- and polyfluoroalkyl substances based on machine learning and quantum chemical computations. Science of the Total Environment, 2022, 807, 151018.	8.0	8
20	Capture and elimination of Staphylococcus aureus based on Langmuir–Blodgett MnO2 nanowire monolayer promotes infected wound healing. Journal of Materials Chemistry B, 2019, 7, 4198-4206.	5.8	5
21	Perfluorooctanesulfonate Induces Hepatomegaly and Lipoatrophy in Mice through Phosphoenolpyruvate Carboxykinase-Mediated Glyceroneogenesis Inhibition. Environmental Science and Technology Letters, 2020, 7, 185-190.	8.7	5
22	In silico identiffation of novel inhibitors targeting the DNA-binding domain of the human estrogen receptor alpha. Journal of Steroid Biochemistry and Molecular Biology, 2021, 213, 105966.	2.5	0