Zongliang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/527217/publications.pdf

Version: 2024-02-01

49 papers

1,203 citations

331670 21 h-index 32 g-index

50 all docs

50 docs citations

50 times ranked

1584 citing authors

#	Article	IF	CITATIONS
1	Improved Cell Adhesion and Osteogenesis of op-HA/PLGA Composite by Poly(dopamine)-Assisted Immobilization of Collagen Mimetic Peptide and Osteogenic Growth Peptide. ACS Applied Materials & amp; Interfaces, 2016, 8, 26559-26569.	8.0	93
2	Micro-porous polyetheretherketone implants decorated with BMP-2 via phosphorylated gelatin coating for enhancing cell adhesion and osteogenic differentiation. Colloids and Surfaces B: Biointerfaces, 2018, 169, 233-241.	5.0	62
3	Biodegradable Microcarriers of Poly(Lactide-co-Glycolide) and Nano-Hydroxyapatite Decorated with IGF-1 via Polydopamine Coating for Enhancing Cell Proliferation and Osteogenic Differentiation. Macromolecular Bioscience, 2015, 15, 1070-1080.	4.1	61
4	A comparative study on the in vivo degradation of poly(L-lactide) based composite implants for bone fracture fixation. Scientific Reports, 2016, 6, 20770.	3.3	59
5	Synergistic osteogenesis promoted by magnetically actuated nano-mechanical stimuli. Nanoscale, 2019, 11, 23423-23437.	5.6	57
6	Improved hemostatic effects by Fe3+ modified biomimetic PLLA cotton-like mat via sodium alginate grafted with dopamine. Bioactive Materials, 2021, 6, 2346-2359.	15.6	51
7	Mussel-Inspired Conducting Copolymer with Aniline Tetramer as Intelligent Biological Adhesive for Bone Tissue Engineering. ACS Biomaterials Science and Engineering, 2020, 6, 634-646.	5. 2	49
8	Gaseous sulfur trioxide induced controllable sulfonation promoting biomineralization and osseointegration of polyetheretherketone implants. Bioactive Materials, 2020, 5, 1004-1017.	15.6	49
9	Biomimetic porous collagen/hydroxyapatite scaffold for bone tissue engineering. Journal of Applied Polymer Science, 2017, 134, 45271.	2.6	47
10	Environmental pH-controlled loading and release of protein on mesoporous hydroxyapatite nanoparticles for bone tissue engineering. Materials Science and Engineering C, 2015, 46, 158-165.	7.3	44
11	Gadolinium-Doped BTO-Functionalized Nanocomposites with Enhanced MRI and X-ray Dual Imaging to Simulate the Electrical Properties of Bone. ACS Applied Materials & Interfaces, 2020, 12, 49464-49479.	8.0	41
12	Modulation of Osteogenesis in MC3T3-E1 Cells by Different Frequency Electrical Stimulation. PLoS ONE, 2016, 11, e0154924.	2.5	36
13	Enhanced in Vitro Mineralization and in Vivo Osteogenesis of Composite Scaffolds through Controlled Surface Grafting of <scp>l</scp> -Lactic Acid Oligomer on Nanohydroxyapatite. Biomacromolecules, 2016, 17, 818-829.	5.4	35
14	Degradable Three Dimensional-Printed Polylactic Acid Scaffold with Long-Term Antibacterial Activity. ACS Sustainable Chemistry and Engineering, 2018, 6, 2047-2054.	6.7	32
15	Enhancing antibacterial capability and osseointegration of polyetheretherketone (PEEK) implants by dual-functional surface modification. Materials and Design, 2021, 205, 109733.	7. O	31
16	Immobilization via polydopamine of dual growth factors on polyetheretherketone: improvement of cell adhesion, proliferation, and osteo-differentiation. Journal of Materials Science, 2019, 54, 11179-11196.	3.7	27
17	Cotton-like micro- and nanoscale poly(lactic acid) nonwoven fibers fabricated by centrifugal melt-spinning for tissue engineering. RSC Advances, 2018, 8, 5166-5179.	3.6	25
18	Covalently functionalized poly(etheretherketone) implants with osteogenic growth peptide (OGP) to improve osteogenesis activity. RSC Advances, 2020, 10, 9777-9785.	3.6	25

#	Article	IF	Citations
19	3D-printing of solvent exchange deposition modeling (SEDM) for a bilayered flexible skin substitute of poly (lactide-co-glycolide) with bioorthogonally engineered EGF. Materials Science and Engineering C, 2020, 112, 110942.	7.3	25
20	An injectable hydroxyapatite/poly(lactide-co-glycolide) composite reinforced by micro/nano-hybrid poly(glycolide) fibers for bone repair. Materials Science and Engineering C, 2017, 80, 326-334.	7.3	24
21	Preparation and Characterization of Silver Sulfadiazine–Loaded Polyvinyl Alcohol Hydrogels as an Antibacterial Wound Dressing. Journal of Pharmaceutical Sciences, 2018, 107, 2377-2384.	3.3	24
22	Photo-immobilization of bone morphogenic protein 2 on PLGA/HA nanocomposites to enhance the osteogenesis of adipose-derived stem cells. RSC Advances, 2016, 6, 20202-20210.	3.6	23
23	DOPA-derived electroactive copolymer and IGF-1 immobilized poly(lactic-co-glycolic) Tj ETQq1 1 0.784314 rgBT / Journal, 2021, 416, 129129.	Overlock 12.7	10 Tf 50 587 22
24	In Vivo MRI and Xâ€Ray Bifunctional Imaging of Polymeric Composite Supplemented with GdPO ₄ ·H ₂ O Nanobundles for Tracing Bone Implant and Bone Regeneration. Advanced Healthcare Materials, 2016, 5, 2182-2190.	7.6	21
25	Porous Scaffolds of Poly(lactic- <i>co</i> -glycolic acid) and Mesoporous Hydroxyapatite Surface Modified by Poly(γ-benzyl- <scp>l</scp> -glutamate) (PBLG) for in Vivo Bone Repair. ACS Biomaterials Science and Engineering, 2019, 5, 2466-2481.	5.2	20
26	Spatiotemporal Magnetocaloric Microenvironment for Guiding the Fate of Biodegradable Polymer Implants. Advanced Functional Materials, 2021, 31, 2009661.	14.9	19
27	The "Pure Marriage―between 3D Printing and Well-Ordered Nanoarrays by Using PEALD Assisted Hydrothermal Surface Engineering. ACS Applied Materials & Samp; Interfaces, 2016, 8, 8393-8400.	8.0	17
28	Intracellular calcium ions and morphological changes of cardiac myoblasts response to an intelligent biodegradable conducting copolymer. Materials Science and Engineering C, 2018, 90, 168-179.	7.3	16
29	Methylsulfonylmethane-loaded electrospun poly(lactide-co-glycolide) mats for cartilage tissue engineering. RSC Advances, 2015, 5, 96725-96732.	3.6	14
30	<i>In vitro</i> degradation behavior of a hydroxyapatite/poly(lactide- <i>co</i> -glycolide) composite reinforced by micro/nano-hybrid poly(glycolide) fibers for bone repair. Journal of Materials Chemistry B, 2017, 5, 8695-8706.	5.8	13
31	<i>In situ</i> polymerization of poly(\hat{i}^3 -benzyl- <scp> </scp> -glutamate) on mesoporous hydroxyapatite with high graft amounts for the direct fabrication of biodegradable cell microcarriers and their osteogenic induction. Journal of Materials Chemistry B, 2018, 6, 3315-3330.	5.8	13
32	An electrically and magnetically responsive nanocomposite of GdPO ₄ ·H ₂ O/P3HT/PLGA with electrical stimulation for synergistically enhancing the proliferation and differentiation of pre-osteoblasts. New Journal of Chemistry, 2019, 43, 17315-17326.	2.8	13
33	Electroactive Nanocomposite Porous Scaffolds of PAP _n /op-HA/PLGA Enhance Osteogenesis in Vivo. ACS Applied Bio Materials, 2019, 2, 1464-1476.	4.6	12
34	Stem Cell Seeded and Silver Nanoparticles Loaded Bilayer PLGA/PVA Dressings for Wound Healing. Macromolecular Bioscience, 2020, 20, e2000141.	4.1	12
35	Porous polyetheretherketone microcarriers fabricated via hydroxylation together with cell-derived mineralized extracellular matrix coatings promote cell expansion and bone regeneration. International Journal of Energy Production and Management, 2021, 8, rbab013.	3.7	12
36	Improved cellular infiltration into 3D interconnected microchannel scaffolds formed by using melt-spun sacrificial microfibers. RSC Advances, 2016, 6, 2131-2134.	3.6	11

#	Article	IF	Citations
37	A Novel Approach via Surface Modification of Degradable Polymers With Adhesive DOPA-IGF-1 for Neural Tissue Engineering. Journal of Pharmaceutical Sciences, 2019, 108, 551-562.	3.3	11
38	Preparation of polycarbonate/gelatine microspheres using a high-voltage electrostatic technique for enhancing the adhesion and proliferation of mesenchymal stem cells. Journal of Materials Science, 2019, 54, 7180-7197.	3.7	10
39	EDTMP ligand-enhanced water interactions endowing iron oxide nanoparticles with dual-modal MRI contrast ability. Journal of Materials Chemistry B, 2021, 9, 9055-9066.	5.8	8
40	Microcarriers with Controllable Size via Electrified Liquid Jets and Phase Separation Technique Promote Cell Proliferation and Osteogenic Differentiation. ACS Applied Bio Materials, 2019, 2, 4134-4141.	4.6	6
41	Highly Permeable Gelatin/Poly(lactic acid) Fibrous Scaffolds with a Three-Dimensional Spatial Structure for Efficient Cell Infiltration, Mineralization and Bone Regeneration. ACS Applied Bio Materials, 2020, 3, 6932-6943.	4.6	5
42	A rapid quantitation of cell attachment and spreading based on digital image analysis: Application for cell affinity and compatibility assessment of synthetic polymers. Materials Science and Engineering C, 2021, 128, 112267.	7.3	5
43	Binding efficiency of recombinant collagenâ€binding basic fibroblast growth factors (CBDâ€bFGFs) and their promotion for NIHâ€3T3 cell proliferation. Biopolymers, 2018, 109, e23105.	2.4	4
44	Biomimetic polyetheretherketone microcarriers with specific surface topography and self-secreted extracellular matrix for large-scale cell expansion. International Journal of Energy Production and Management, 2019, 7, 109-118.	3.7	4
45	Enhanced osteogenic activities of polyetheretherketone surface modified by poly(sodium pâ€styrene) Tj ETQq1 i	1 0,78431 2.6	4 rgBT /Over
46	Antibacterial microspheres with a bionic red-blood-cell like hollow structure and superior swelling recovery capacity for efficient traumatic hemostasis. Applied Materials Today, 2022, 29, 101559.	4.3	4
47	Peptide-Grafted Microspheres for Mesenchymal Stem Cell Sorting and Expansion by Selective Adhesion. Frontiers in Bioengineering and Biotechnology, 2022, 10, 873125.	4.1	3
48	Incorporation of Gadolinium Oxide and Gadolinium Oxysulfide Microspheres: MRI/CT Monitoring and Promotion of Osteogenic/Chondrogenic Differentiation for Bone Implants. ChemNanoMat, 2020, 6, 1819-1832.	2.8	2
49	Back Cover: Macromol. Biosci. 8/2015. Macromolecular Bioscience, 2015, 15, 1174-1174.	4.1	O