
Andreas Otto Wagner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5272049/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biological Pretreatment Strategies for Second-Generation Lignocellulosic Resources to Enhance Biogas Production. Energies, 2018, 11, 1797.	1.6	169
2	Removal of Free Extracellular DNA from Environmental Samples by Ethidium Monoazide and Propidium Monoazide. Applied and Environmental Microbiology, 2008, 74, 2537-2539.	1.4	129
3	Impact of protein-, lipid- and cellulose-containing complex substrates on biogas production and microbial communities in batch experiments. Science of the Total Environment, 2013, 458-460, 256-266.	3.9	68
4	Microbial community related to volatile organic compound (VOC) emission in household biowaste. Environmental Microbiology, 2006, 8, 1960-1974.	1.8	61
5	Biological pre-treatment: Enhancing biogas production using the highly cellulolytic fungus Trichoderma viride. Waste Management, 2015, 43, 98-107.	3.7	58
6	A closed loop for municipal organic solid waste by lactic acid fermentation. Bioresource Technology, 2015, 175, 142-151.	4.8	49
7	Improvement of methane generation capacity by aerobic pre-treatment of organic waste with a cellulolytic Trichoderma viride culture. Journal of Environmental Management, 2013, 129, 357-360.	3.8	47
8	Temperature shapes the microbiota in anaerobic digestion and drives efficiency to a maximum at 45â€Â°C. Bioresource Technology, 2018, 269, 309-318.	4.8	43
9	Survival of bacterial pathogens during the thermophilic anaerobic digestion of biowaste: Laboratory experiments and in situ validation. Anaerobe, 2008, 14, 181-183.	1.0	42
10	Effects of different nitrogen sources on the biogas production – a lab-scale investigation. Microbiological Research, 2012, 167, 630-636.	2.5	42
11	Effect of DNA extraction procedure, repeated extraction and ethidium monoazide (EMA)/propidium monoazide (PMA) treatment on overall DNA yield and impact on microbial fingerprints for bacteria, fungi and archaea in a reference soil. Applied Soil Ecology, 2015, 93, 56-64.	2.1	42
12	Plant species, temperature, and bedrock affect net methane flux out of grassland and forest soils. Plant and Soil, 2017, 410, 193-206.	1.8	38
13	Abundance and potential metabolic activity of methanogens in well-aerated forest and grassland soils of an alpine region. FEMS Microbiology Ecology, 2016, 92, fiv171.	1.3	36
14	Hydrogenotrophic Methanogenesis and Autotrophic Growth of <i>Methanosarcina thermophila</i> . Archaea, 2018, 2018, 1-7.	2.3	35
15	Application of Denaturing High-Performance Liquid Chromatography in Microbial Ecology: Fermentor Sludge, Compost, and Soil Community Profiling. Applied and Environmental Microbiology, 2009, 75, 956-964.	1.4	34
16	Effects of various fatty acid amendments on a microbial digester community in batch culture. Waste Management, 2011, 31, 431-437.	3.7	34
17	Reduction of accumulated volatile fatty acids by an acetate-degrading enrichment culture. FEMS Microbiology Ecology, 2010, 71, 469-478.	1.3	32
18	Effects of fertilisation, temperature and water content on microbial properties and methane production and methane oxidation in subalpine soils. European Journal of Soil Biology, 2014, 65, 96-106.	1.4	32

#	Article	IF	CITATIONS
19	Survival of selected pathogens in diluted sludge of a thermophilic waste treatment plant and in NaCl-solution under aerobic and anaerobic conditions. Waste Management, 2009, 29, 425-429.	3.7	31
20	Effect of different acetate:propionate ratios on the methanogenic community during thermophilic anaerobic digestion in batch experiments. Biochemical Engineering Journal, 2014, 90, 154-161.	1.8	30
21	Biowaste: A Lactobacillus habitat and lactic acid fermentation substrate. Bioresource Technology, 2013, 143, 647-652.	4.8	29
22	Sample preparation, preservation, and storage for volatile fatty acid quantification in biogas plants. Engineering in Life Sciences, 2017, 17, 132-139.	2.0	24
23	Effect of sulfate addition on carbon flow and microbial community composition during thermophilic digestion of cellulose. Applied Microbiology and Biotechnology, 2020, 104, 4605-4615.	1.7	24
24	Methane-cycling microorganisms in soils of a high-alpine altitudinal gradient. FEMS Microbiology Ecology, 2016, 92, fiw009.	1.3	22
25	Medium Preparation for the Cultivation of Microorganisms under Strictly Anaerobic/Anoxic Conditions. Journal of Visualized Experiments, 2019, , .	0.2	22
26	Process parameters within a 750,000litre anaerobic digester during a year of disturbed fermenter performance. Waste Management, 2009, 29, 1838-1843.	3.7	21
27	Archaeal Distribution in Moonmilk Deposits from Alpine Caves and Their Ecophysiological Potential. Microbial Ecology, 2016, 71, 686-699.	1.4	21
28	Detection and Stability of SARS-CoV-2 Fragments in Wastewater: Impact of Storage Temperature. Pathogens, 2021, 10, 1215.	1.2	21
29	Utilisation of single added fatty acids by consortia of digester sludge in batch culture. Waste Management, 2010, 30, 1822-1827.	3.7	20
30	Formation of phenylacetic acid and phenylpropionic acid under different overload conditions during mesophilic and thermophilic anaerobic digestion. Biotechnology for Biofuels, 2019, 12, 26.	6.2	19
31	Biodegradation of lignin monomers and bioconversion of ferulic acid to vanillic acid by Paraburkholderia aromaticivorans AR20-38 isolated from Alpine forest soil. Applied Microbiology and Biotechnology, 2021, 105, 2967-2977.	1.7	19
32	Cultivation of moonmilk-born non-extremophilic ThaumÂand Euryarchaeota in mixed culture. Anaerobe, 2014, 29, 73-79.	1.0	18
33	Detection and abundance of SARS-CoV-2 in wastewater in Liechtenstein, and the estimation of prevalence and impact of the B.1.1.7 variant. Journal of Water and Health, 2022, 20, 114-125.	1.1	18
34	Microbial Succession during Thermophilic Digestion: The Potential of Methanosarcina sp. PLoS ONE, 2014, 9, e86967.	1.1	17
35	Methane yields and methanogenic community changes during co-fermentation of cattle slurry with empty fruit bunches of oil palm. Bioresource Technology, 2015, 175, 619-623.	4.8	17
36	Biomethanation at 45°C offers high process efficiency and supports hygienisation. Bioresource Technology, 2020, 300, 122671.	4.8	17

ANDREAS OTTO WAGNER

#	Article	IF	CITATIONS
37	Reactor performance of a 750Âm3 anaerobic digestion plant: Varied substrate input conditions impacting methanogenic community. Anaerobe, 2014, 29, 29-33.	1.0	16
38	Lactic acid fermentation within a cascading approach for biowaste treatment. Applied Microbiology and Biotechnology, 2015, 99, 3029-3040.	1.7	16
39	Microbial and Phenyl Acid Dynamics during the Start-up Phase of Anaerobic Straw Degradation in Meso- and Thermophilic Batch Reactors. Microorganisms, 2019, 7, 657.	1.6	15
40	pH and Phosphate Induced Shifts in Carbon Flow and Microbial Community during Thermophilic Anaerobic Digestion. Microorganisms, 2020, 8, 286.	1.6	14
41	Proposal of Thermoactinomyces mirandus sp. nov., a filamentous, anaerobic bacterium isolated from a biogas plant. Antonie Van Leeuwenhoek, 2021, 114, 45-54.	0.7	13
42	The glutamyl tail length of the cofactor F420 in the methanogenic Archaea Methanosarcina thermophila and Methanoculleus thermophilus. Science of the Total Environment, 2022, 809, 151112.	3.9	13
43	Methanogenic potential of formate in thermophilic anaerobic digestion. Waste Management and Research, 2012, 30, 1031-1040.	2.2	12
44	New Undescribed Lineages of Non-extremophilic Archaea Form a Homogeneous and Dominant Element Within Alpine Moonmilk Microbiomes. Geomicrobiology Journal, 2015, 32, 890-902.	1.0	12
45	Chemical and Biochemical Parameters During Composting of Lawn Clippings with Special Regard to the Efficiency of a Compost Starter Kit. Compost Science and Utilization, 2007, 15, 40-46.	1.2	10
46	A simple method for the enumeration of methanogens by most probable number counting. Biomass and Bioenergy, 2012, 45, 311-314.	2.9	10
47	Methanogenic activities in alpine soils. Folia Microbiologica, 2012, 57, 371-373.	1.1	8
48	Microbial community dynamics in mesophilic and thermophilic batch reactors under methanogenic, phenyl acid-forming conditions. Biotechnology for Biofuels, 2020, 13, 81.	6.2	8
49	Lignin intermediates lead to phenyl acid formation and microbial community shifts in meso- and thermophilic batch reactors. Biotechnology for Biofuels, 2021, 14, 27.	6.2	8
50	Using Digestate Compost as a Substrate forÂAnaerobic Digestion. Chemical Engineering and Technology, 2018, 41, 747-754.	0.9	6
51	Low-Temperature Biodegradation of Lignin-Derived Aromatic Model Monomers by the Cold-Adapted Yeast RhodosporidiobolusÂcolostri Isolated from Alpine Forest Soil. Microorganisms, 2022, 10, 515.	1.6	5
52	Can the addition of biochar improve the performance of biogas digesters operated at 45°C?. Environmental Engineering Research, 2022, 27, 200648-0.	1.5	3
53	Extraction of Cofactor F ₄₂₀ for Analysis of Polyglutamate Tail Length from Methanogenic Pure Cultures and Environmental Samples. Journal of Visualized Experiments, 2021, , .	0.2	3
54	Potential methane production and oxidation along the soil chronosequence of the Rotmoos glacier forefield. Bodenkultur, 2019, 70, 19-31.	0.1	1

#	Article	IF	CITATIONS
55	No oxygen-still vigorous: 8th International Symposium on Anaerobic Microbiology (ISAM 8) Innsbruck, Austria. Anaerobe, 2014, 29, 1-2.	1.0	0
56	Spiking a Silty-Sand Reference Soil with Bacterial DNA: Limits and Pitfalls in the Discrimination of Live and Dead Cells When Applying Ethidium Monoazide (EMA) Treatment. Current Microbiology, 2019, 76, 1425-1434.	1.0	0
57	Editorial: Exploring the Role and Function of the Microbiota in Terrestrial Anaerobic Environments and Their Potential Biotechnological Application. Frontiers in Microbiology, 2021, 12, 722268.	1.5	0