
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5271610/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synergistic effects of antimicrobial peptide dendrimer-chitosan polymer conjugates against Pseudomonas aeruginosa. Carbohydrate Polymers, 2022, 280, 119025.	10.2	20
2	Reaction classification and yield prediction using the differential reaction fingerprint DRFP. , 2022, 1, 91-97.		45
3	2′- <i>O</i> -(<i>N</i> -(Aminoethyl)carbamoyl)methyl Modification Allows for Lower Phosphorothioate Content in Splice-Switching Oligonucleotides with Retained Activity. Nucleic Acid Therapeutics, 2022, ,	3.6	4
4	Artificial intelligence and automation in computer aided synthesis planning. Reaction Chemistry and Engineering, 2021, 6, 27-51.	3.7	39
5	A Potent and Selective Janus Kinase Inhibitor with a Chiral 3Dâ€5haped Triquinazine Ring System from Chemical Space. Angewandte Chemie - International Edition, 2021, 60, 2074-2077.	13.8	9
6	A mixed chirality α-helix in a stapled bicyclic and a linear antimicrobial peptide revealed by X-ray crystallography. RSC Chemical Biology, 2021, 2, 1608-1617.	4.1	7
7	Lipophilic Peptide Dendrimers for Delivery of Splice-Switching Oligonucleotides. Pharmaceutics, 2021, 13, 116.	4.5	5
8	The antibacterial activity of peptide dendrimers and polymyxin B increases sharply above pH 7.4. Chemical Communications, 2021, 57, 5654-5657.	4.1	12
9	Stereorandomization as a Method to Probe Peptide Bioactivity. ACS Central Science, 2021, 7, 126-134.	11.3	18
10	Predicting enzymatic reactions with a molecular transformer. Chemical Science, 2021, 12, 8648-8659.	7.4	43
11	Substrate specificities and reaction kinetics of the yeast oligosaccharyltransferase isoforms. Journal of Biological Chemistry, 2021, 296, 100809.	3.4	6
12	Extraction of organic chemistry grammar from unsupervised learning of chemical reactions. Science Advances, 2021, 7, .	10.3	98
13	An oral antisense oligonucleotide for PCSK9 inhibition. Science Translational Medicine, 2021, 13, .	12.4	74
14	Peptide Dendrimers: From Enzyme Models to Antimicrobials and Transfection Reagents. Chimia, 2021, 75, 535.	0.6	9
15	Antimicrobial Peptide Dendrimers and Quorum-Sensing Inhibitors in Formulating Next-Generation Anti-Infection Cell Therapy Dressings for Burns. Molecules, 2021, 26, 3839.	3.8	4
16	Inhibitors of Human Divalent Metal Transporters DMT1 (SLC11A2) and ZIP8 (SLC39A8) from a GDBâ€17 Fragment Library. ChemMedChem, 2021, 16, 3306-3314.	3.2	8
17	Machine learning designs non-hemolytic antimicrobial peptides. Chemical Science, 2021, 12, 9221-9232.	7.4	58
18	Mapping the space of chemical reactions using attention-based neural networks. Nature Machine Intelligence, 2021, 3, 144-152.	16.0	121

#	Article	IF	CITATIONS
19	An Immunomodulatory Peptide Dendrimer Inspired from Glatiramer Acetate. Angewandte Chemie - International Edition, 2021, 60, 26403-26408.	13.8	6
20	An Immunomodulatory Peptide Dendrimer Inspired from Glatiramer Acetate. Angewandte Chemie, 2021, 133, 26607-26612.	2.0	1
21	Classifying natural products from plants, fungi or bacteria using the COCONUT database and machine learning. Journal of Cheminformatics, 2021, 13, 82.	6.1	12
22	Fine Tuning of Phosphorothioate Inclusion in 2′-O-Methyl Oligonucleotides Contributes to Specific Cell Targeting for Splice-Switching Modulation. Frontiers in Physiology, 2021, 12, 689179.	2.8	0
23	Datasets and their influence on the development of computer assisted synthesis planning tools in the pharmaceutical domain. Chemical Science, 2020, 11, 154-168.	7.4	78
24	Populating Chemical Space with Peptides Using a Genetic Algorithm. Journal of Chemical Information and Modeling, 2020, 60, 121-132.	5.4	18
25	Transfer learning enables the molecular transformer to predict regio- and stereoselective reactions on carbohydrates. Nature Communications, 2020, 11, 4874.	12.8	107
26	What can reaction databases teach us about Buchwald–Hartwig cross-couplings?. Chemical Science, 2020, 11, 13085-13093.	7.4	31
27	Assigning the Origin of Microbial Natural Products by Chemical Space Map and Machine Learning. Biomolecules, 2020, 10, 1385.	4.0	15
28	Natural product inspired optimization of a selective TRPV6 calcium channel inhibitor. RSC Medicinal Chemistry, 2020, 11, 1032-1040.	3.9	21
29	AiZynthFinder: a fast, robust and flexible open-source software for retrosynthetic planning. Journal of Cheminformatics, 2020, 12, 70.	6.1	132
30	Inactivation-mimicking block of the epithelial calcium channel TRPV6. Science Advances, 2020, 6, .	10.3	22
31	Synergistic Effect of Propidium Iodide and Small Molecule Antibiotics with the Antimicrobial Peptide Dendrimer G3KL against Gram-Negative Bacteria. Molecules, 2020, 25, 5643.	3.8	15
32	Transfecting tissue models with CRISPR/Cas9 plasmid DNA using peptide dendrimers. Chemical Communications, 2020, 56, 11981-11984.	4.1	21
33	"Ring Breaker― Neural Network Driven Synthesis Prediction of the Ring System Chemical Space. Journal of Medicinal Chemistry, 2020, 63, 8791-8808.	6.4	19
34	Fluorescent Peptide Dendrimers for siRNA Transfection: Tracking pH Responsive Aggregation, siRNA Binding, and Cell Penetration. Bioconjugate Chemistry, 2020, 31, 1671-1684.	3.6	11
35	SMILES-based deep generative scaffold decorator for de-novo drug design. Journal of Cheminformatics, 2020, 12, 38.	6.1	108
36	The Generated Databases (GDBs) as a Source of 3D-shaped Building Blocks for Use in Medicinal Chemistry and Drug Discovery. Chimia, 2020, 74, 241.	0.6	13

#	Article	IF	CITATIONS
37	Adaptive and Mutational Responses to Peptide Dendrimer Antimicrobials in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	26
38	One molecular fingerprint to rule them all: drugs, biomolecules, and the metabolome. Journal of Cheminformatics, 2020, 12, 43.	6.1	157
39	Pyrazolyl-pyrimidones inhibit the function of human solute carrier protein SLC11A2 (hDMT1) by metal chelation. RSC Medicinal Chemistry, 2020, 11, 1023-1031.	3.9	5
40	ChEMBL-Likeness Score and Database GDBChEMBL. Frontiers in Chemistry, 2020, 8, 46.	3.6	33
41	Structure and mechanism of the ER-based glucosyltransferase ALG6. Nature, 2020, 579, 443-447.	27.8	52
42	The name tells the story: Two-pore channels. Cell Calcium, 2020, 89, 102215.	2.4	3
43	Visualization of very large high-dimensional data sets as minimum spanning trees. Journal of Cheminformatics, 2020, 12, 12.	6.1	160
44	Stereoselective pH Responsive Peptide Dendrimers for siRNA Transfection. Bioconjugate Chemistry, 2019, 30, 2165-2182.	3.6	19
45	Antisense Oligonucleotides for Splice Modulation: Assessing Splice Switching Efficacy. Methods in Molecular Biology, 2019, 2036, 73-90.	0.9	1
46	Xâ€Ray Crystal Structure of a Secondâ€Generation Peptide Dendrimer in Complex with <i>Pseudomonas aeruginosa</i> Lectin LecB. Helvetica Chimica Acta, 2019, 102, e1900178.	1.6	4
47	Photoswitchable Inhibitor of the Calcium Channel TRPV6. ACS Medicinal Chemistry Letters, 2019, 10, 1341-1345.	2.8	13
48	Fluorescence Imaging of Bacterial Killing by Antimicrobial Peptide Dendrimer G3KL. ACS Infectious Diseases, 2019, 5, 2164-2173.	3.8	44
49	Glycocluster Tetrahydroxamic Acids Exhibiting Unprecedented Inhibition of <i>Pseudomonas aeruginosa</i> Biofilms. Journal of Medicinal Chemistry, 2019, 62, 7722-7738.	6.4	17
50	Optimizing TRPM4 inhibitors in the MHFP6 chemical space. European Journal of Medicinal Chemistry, 2019, 166, 167-177.	5.5	11
51	Medicinal Chemistry Aware Database GDBMedChem. Molecular Informatics, 2019, 38, e1900031.	2.5	15
52	Exploring the GDB-13 chemical space using deep generative models. Journal of Cheminformatics, 2019, 11, 20.	6.1	107
53	Peptide dendrimers G3KL and TNS18 inhibit Pseudomonas aeruginosa biofilms. Applied Microbiology and Biotechnology, 2019, 103, 5821-5830.	3.6	16
54	X-ray Crystal Structures of Short Antimicrobial Peptides as <i>Pseudomonas aeruginosa</i> Lectin B Complexes. ACS Chemical Biology, 2019, 14, 758-766.	3.4	22

#	Article	IF	CITATIONS
55	PubChem and ChEMBL beyond Lipinski. Molecular Informatics, 2019, 38, e1900016.	2.5	29
56	Drug Analogs from Fragment-Based Long Short-Term Memory Generative Neural Networks. Journal of Chemical Information and Modeling, 2019, 59, 1347-1356.	5.4	39
57	Mapping the Azolog Space Enables the Optical Control of New Biological Targets. ACS Central Science, 2019, 5, 607-618.	11.3	65
58	Antimicrobial Peptide Dendrimer Chimera. Helvetica Chimica Acta, 2019, 102, e1900034.	1.6	22
59	Randomized SMILES strings improve the quality of molecular generative models. Journal of Cheminformatics, 2019, 11, 71.	6.1	162
60	Polypharmacology Browser PPB2: Target Prediction Combining Nearest Neighbors with Machine Learning. Journal of Chemical Information and Modeling, 2019, 59, 10-17.	5.4	100
61	Web-Based Tools for Polypharmacology Prediction. Methods in Molecular Biology, 2019, 1888, 255-272.	0.9	23
62	Identifying Lysophosphatidic Acid Acyltransferaseâ€Î² (LPAATâ€Î²) as the Target of a Nanomolar Angiogenesis Inhibitor from a Phenotypic Screen Using the Polypharmacology Browser PPB2. ChemMedChem, 2019, 14, 224-236.	3.2	13
63	Exploring Chemical Space with Machine Learning. Chimia, 2019, 73, 1018.	0.6	20
64	Mechanistic basis of the inhibition of SLC11/NRAMP-mediated metal ion transport by bis-isothiourea substituted compounds. ELife, 2019, 8, .	6.0	15
65	Identification of potent and selective small molecule inhibitors of the cation channel <scp>TRPM4</scp> . British Journal of Pharmacology, 2018, 175, 2504-2519.	5.4	47
66	Structural basis of the molecular ruler mechanism of a bacterial glycosyltransferase. Nature Communications, 2018, 9, 445.	12.8	31
67	SmilesDrawer: Parsing and Drawing SMILES-Encoded Molecular Structures Using Client-Side JavaScript. Journal of Chemical Information and Modeling, 2018, 58, 1-7.	5.4	52
68	FUn: a framework for interactive visualizations of large, high-dimensional datasets on the web. Bioinformatics, 2018, 34, 1433-1435.	4.1	41
69	Lipidated Peptide Dendrimers Killing Multidrug-Resistant Bacteria. Journal of the American Chemical Society, 2018, 140, 423-432.	13.7	95
70	Mapping of the Available Chemical Space versus the Chemical Universe of Lead‣ike Compounds. ChemMedChem, 2018, 13, 540-554.	3.2	33
71	A probabilistic molecular fingerprint for big data settings. Journal of Cheminformatics, 2018, 10, 66.	6.1	71
72	Structure of bacterial oligosaccharyltransferase PglB bound to a reactive LLO and an inhibitory peptide. Scientific Reports, 2018, 8, 16297.	3.3	26

#	Article	IF	CITATIONS
73	Novel peptide-dendrimer/lipid/oligonucleotide ternary complexes for efficient cellular uptake and improved splice-switching activity. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 132, 29-40.	4.3	17
74	Optimizing Antimicrobial Peptide Dendrimers in Chemical Space. Angewandte Chemie - International Edition, 2018, 57, 8483-8487.	13.8	37
75	Synthesis of Lipid-Linked Oligosaccharides (LLOs) and Their Phosphonate Analogues as Probes To Study Protein Glycosylation Enzymes. Synthesis, 2018, 50, 2631-2654.	2.3	13
76	Exploring DrugBank in Virtual Reality Chemical Space. Journal of Chemical Information and Modeling, 2018, 58, 1731-1735.	5.4	38
77	Deep Learning Invades Drug Design and Synthesis. Chimia, 2018, 72, 70.	0.6	3
78	Improved fluorescence assays to measure the defects associated with F508delâ€CFTR allow identification of new active compounds. British Journal of Pharmacology, 2017, 174, 525-539.	5.4	17
79	The polypharmacology browser: a web-based multi-fingerprint target prediction tool using ChEMBL bioactivity data. Journal of Cheminformatics, 2017, 9, 11.	6.1	83
80	Chemo-enzymatic synthesis of lipid-linked GlcNAc2Man5 oligosaccharides using recombinant Alg1, Alg2 and Alg11 proteins. Glycobiology, 2017, 27, 726-733.	2.5	33
81	Peptide Dendrimer–Lipid Conjugates as DNA and siRNA Transfection Reagents: Role of Charge Distribution Across Generations. Chimia, 2017, 71, 220.	0.6	13
82	Fragment Database FDB-17. Journal of Chemical Information and Modeling, 2017, 57, 700-709.	5.4	61
83	WebMolCS: A Web-Based Interface for Visualizing Molecules in Three-Dimensional Chemical Spaces. Journal of Chemical Information and Modeling, 2017, 57, 643-649.	5.4	27
84	Molecular basis of lipid-linked oligosaccharide recognition and processing by bacterial oligosaccharyltransferase. Nature Structural and Molecular Biology, 2017, 24, 1100-1106.	8.2	68
85	Virtual Exploration of the Ring Systems Chemical Universe. Journal of Chemical Information and Modeling, 2017, 57, 2707-2718.	5.4	27
86	Medicinal and Biological Chemistry (MBC) Library: An Efficient Source of New Hits. Journal of Chemical Information and Modeling, 2017, 57, 2143-2151.	5.4	28
87	Characterization of the single-subunit oligosaccharyltransferase STT3A from Trypanosoma brucei using synthetic peptides and lipid-linked oligosaccharide analogs. Glycobiology, 2017, 27, 525-535.	2.5	31
88	Chemical space guided discovery of antimicrobial bridged bicyclic peptides against Pseudomonas aeruginosa and its biofilms. Chemical Science, 2017, 8, 6784-6798.	7.4	42
89	Design, crystal structure and atomic force microscopy study of thioether ligated <scp>d</scp> , <scp>l</scp> -cyclic antimicrobial peptides against multidrug resistant Pseudomonas aeruginosa. Chemical Science, 2017, 8, 7464-7475.	7.4	24
90	Disruption of Higher Order DNA Structures in Friedreich's Ataxia (GAA)n Repeats by PNA or LNA Targeting. PLoS ONE, 2016, 11, e0165788.	2.5	18

#	Article	IF	CITATIONS
91	Discovery of a Selective Aurora A Kinase Inhibitor by Virtual Screening. Journal of Medicinal Chemistry, 2016, 59, 7188-7211.	6.4	57
92	Fluorescent Agonists of the α 7 Nicotinic Acetylcholine Receptor Derived from 3â€Aminoâ€Quinuclidine. Helvetica Chimica Acta, 2016, 99, 790-804.	1.6	1
93	BIGCHEM: Challenges and Opportunities for Big Data Analysis in Chemistry. Molecular Informatics, 2016, 35, 615-621.	2.5	85
94	Four Novel Splice-Switch Reporter Cell Lines: Distinct Impact of Oligonucleotide Chemistry and Delivery Vector on Biological Activity. Nucleic Acid Therapeutics, 2016, 26, 381-391.	3.6	12
95	Efficient Transfection of siRNA by Peptide Dendrimer–Lipid Conjugates. ChemBioChem, 2016, 17, 2223-2229.	2.6	22
96	Web-based 3D-visualization of the DrugBank chemical space. Journal of Cheminformatics, 2016, 8, 25.	6.1	15
97	Overcoming antibiotic resistance in Pseudomonas aeruginosa biofilms using glycopeptide dendrimers. Chemical Science, 2016, 7, 166-182.	7.4	92
98	PDB-Explorer: a web-based interactive map of the protein data bank in shape space. BMC Bioinformatics, 2015, 16, 339.	2.6	31
99	Optimization of TRPV6 Calcium Channel Inhibitors Using a 3D Ligandâ€Based Virtual Screening Method. Angewandte Chemie - International Edition, 2015, 54, 14748-14752.	13.8	40
100	The Chemical Space Project. Accounts of Chemical Research, 2015, 48, 722-730.	15.6	438
101	RNA therapeutics inactivate PCSK9 by inducing a unique intracellular retention form. Journal of Molecular and Cellular Cardiology, 2015, 82, 186-193.	1.9	19
102	Discovery and characterization of a novel non-competitive inhibitor of the divalent metal transporter DMT1/SLC11A2. Biochemical Pharmacology, 2015, 96, 216-224.	4.4	24
103	Nuclease resistant oligonucleotides with cell penetrating properties. Chemical Communications, 2015, 51, 4044-4047.	4.1	18
104	Bridged bicyclic peptides as potential drug scaffolds: synthesis, structure, protein binding and stability. Chemical Science, 2015, 6, 5473-5490.	7.4	37
105	Trypanosoma brucei Bloodstream Forms Depend upon Uptake of <i>myo</i> -Inositol for Golgi Complex Phosphatidylinositol Synthesis and Normal Cell Growth. Eukaryotic Cell, 2015, 14, 616-624.	3.4	18
106	Stereoselective virtual screening of the ZINC database using atom pair 3D-fingerprints. Journal of Cheminformatics, 2015, 7, 3.	6.1	51
107	Structure and mechanism of an active lipid-linked oligosaccharide flippase. Nature, 2015, 524, 433-438.	27.8	184
108	Similarity Mapplet: Interactive Visualization of the Directory of Useful Decoys and ChEMBL in High Dimensional Chemical Spaces. Journal of Chemical Information and Modeling, 2015, 55, 1509-1516.	5.4	23

#	Article	IF	CITATIONS
109	<i>In Vitro</i> Activity of the Novel Antimicrobial Peptide Dendrimer G3KL against Multidrug-Resistant Acinetobacter baumannii and Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2015, 59, 7915-7918.	3.2	70
110	Structural Insight into Multivalent Galactoside Binding to <i>Pseudomonas aeruginosa</i> Lectin LecA. ACS Chemical Biology, 2015, 10, 2455-2462.	3.4	52
111	Substrate Specificity of Cytoplasmic N-Glycosyltransferase. Journal of Biological Chemistry, 2014, 289, 24521-24532.	3.4	48
112	A multi-fingerprint browser for the ZINC database. Nucleic Acids Research, 2014, 42, W234-W239.	14.5	32
113	Designed cell penetrating peptide dendrimers efficiently internalize cargo into cells. Chemical Communications, 2014, 50, 7254-7257.	4.1	48
114	Expanding the fragrance chemical space for virtual screening. Journal of Cheminformatics, 2014, 6, 27.	6.1	33
115	OMA & OPA – A Software Tool for Mass Spectrometric Sequencing of Nucleic Acids. Chimia, 2014, 68, 86-86.	0.6	0
116	PEPTIDE DENDRIMERS AND POLYCYCLIC PEPTIDES., 2014, , .		0
117	Peptide Dendrimer/Lipid Hybrid Systems Are Efficient DNA Transfection Reagents: Structure–Activity Relationships Highlight the Role of Charge Distribution Across Dendrimer Generations. ACS Nano, 2013, 7, 4668-4682.	14.6	78
118	Clycopeptide dendrimers as Pseudomonas aeruginosa biofilm inhibitors. Chemical Society Reviews, 2013, 42, 4814.	38.1	121
119	Development of bis-locked nucleic acid (bisLNA) oligonucleotides for efficient invasion of supercoiled duplex DNA. Nucleic Acids Research, 2013, 41, 3257-3273.	14.5	25
120	Expanding the Topological Space of Bioactive Peptides. Chimia, 2013, 67, 864.	0.6	12
121	Peptide and glycopeptide dendrimer apple trees as enzyme models and for biomedical applications. Organic and Biomolecular Chemistry, 2012, 10, 1483.	2.8	78
122	Membrane disrupting antimicrobial peptide dendrimers with multiple amino termini. MedChemComm, 2012, 3, 86-89.	3.4	43
123	The enumeration of chemical space. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2012, 2, 717-733.	14.6	97
124	Exploring Chemical Space for Drug Discovery Using the Chemical Universe Database. ACS Chemical Neuroscience, 2012, 3, 649-657.	3.5	228
125	Inhibition of Pseudomonas aeruginosa biofilms with a glycopeptide dendrimer containing D-amino acids. MedChemComm, 2011, 2, 418.	3.4	48
126	Exploring the Chemical Space of Known and Unknown Organic Small Molecules at www.gdb.unibe.ch. Chimia, 2011, 65, 863.	0.6	28

#	Article	IF	CITATIONS
127	Exploring α7-Nicotinic Receptor Ligand Diversity by Scaffold Enumeration from the Chemical Universe Database GDB. ACS Medicinal Chemistry Letters, 2010, 1, 422-426.	2.8	27
128	Chemical space as a source for new drugs. MedChemComm, 2010, 1, 30.	3.4	257
129	Structure–Activity Relationship Studies in Singleâ€Site Esterase Peptide Dendrimers. Israel Journal of Chemistry, 2009, 49, 129-136.	2.3	11
130	Enzyme assays. Chemical Communications, 2008, , 34-46.	4.1	98
131	<i>Substrate Arrays for Fluorescenceâ€Based Enzyme Fingerprinting and Highâ€Throughput Screening</i> . Annals of the New York Academy of Sciences, 2008, 1130, 12-20.	3.8	13
132	Screening Systems. , 2007, 105, 31-58.		16
133	Combinatorial variation of branching length and multivalency in a large (390 625 member) glycopeptide dendrimer library: ligands for fucose-specific lectins. New Journal of Chemistry, 2007, 31, 1291.	2.8	51
134	Protease Substrate Profiling. , 2006, , 303-331.		0
135	Enzyme Assays on Chips. , 2006, , 333-362.		1
136	High-throughput Screening Systems for Assaying the Enantioselectivity of Enzymes. , 2006, , 41-76.		17
137	High-throughput Screening Methods Developed for Oxidoreductases. , 2006, , 77-93.		10
138	Industrial Perspectives on Assays. , 2006, , 95-135.		4
139	High-throughput Screens and Selections of Enzyme-encoding Genes. , 2006, , 163-181.		Ο
140	Chemical Complementation. , 2006, , 183-219.		0
141	Fluorescent Probes for Lipolytic Enzymes. , 2006, , 239-269.		Ο
142	Agar Plate-based Assays. , 2006, , 137-161.		7
143	Molecular Approaches for the Screening of Novel Enzymes. , 2006, , 221-238.		2
144	Quantitative Assay of Hydrolases for Activity and Selectivity Using Color Changes. , 2006, , 15-39.		7

Quantitative Assay of Hydrolases for Activity and Selectivity Using Color Changes. , 2006, , 15-39. 144

9

#	Article	IF	CITATIONS
145	New Monofunctionalized Fluorescein Derivatives for the Efficient High-Throughput Screening of Lipases and Esterases in Aqueous Media. Helvetica Chimica Acta, 2006, 89, 404-415.	1.6	27
146	Screening Methods for Catalytic Antibodies. , 2005, , 217-242.		0
147	A Fluorescence-Based Assay for Baeyer-Villiger Monooxygenases, Hydroxylases and Lactonases. Advanced Synthesis and Catalysis, 2005, 347, 1041-1050.	4.3	50
148	Multienzyme Profiling of Thermophilic Microorganisms with a Substrate Cocktail Assay. Advanced Synthesis and Catalysis, 2005, 347, 987-996.	4.3	18
149	Outrunning the Bear. Angewandte Chemie - International Edition, 2004, 43, 5577-5579.	13.8	24
150	NewC(4)-Functionalized Colchicine Derivatives by a Versatile Multicomponent Electrophilic Aromatic Substitution. Helvetica Chimica Acta, 2004, 87, 2266-2272.	1.6	8
151	Synthesis and Evaluation of Chromogenic and Fluorogenic Analogs of Glycerol for Enzyme Assays. Helvetica Chimica Acta, 2003, 86, 2458-2470.	1.6	38
152	A Sensitive and Selective High-Throughput Screening Fluorescence Assay for Lipases and Esterases. Helvetica Chimica Acta, 2003, 86, 2919-2927.	1.6	36
153	β-Amino Alcohol Properfumes. Helvetica Chimica Acta, 2003, 86, 2928-2936.	1.6	26
154	Fluorogenic Cyanohydrin Esters as Chiral Probes for Esterase and Lipase Activity. Advanced Synthesis and Catalysis, 2003, 345, 859-865.	4.3	25
155	Stereoselective Inhibition of α-l-Fucosidases byN-Benzyl Aminocyclopentitols. Organic Letters, 2000, 2, 1733-1736.	4.6	25
156	Catalytic Antibodies by Fluorescence Screening. Helvetica Chimica Acta, 1999, 82, 44-52.	1.6	21
157	Enantioselective Fluorogenic Assay of Acetate Hydrolysis for Detecting Lipase Catalytic Antibodies. Helvetica Chimica Acta, 1999, 82, 400-407.	1.6	108
158	A Selectiveα-L-Fucosidase Inhibitor Based on an Aminocyclopentane Framework. Helvetica Chimica Acta, 1999, 82, 760-768.	1.6	21
159	A General Fluorogenic Assay for Catalysis Using Antibody Sensors. Chemistry - A European Journal, 1999, 5, 1006-1012.	3.3	30
160	Anomer-Selective Inhibition of Glycosidases Using Aminocyclopentanols. Organic Letters, 1999, 1, 775-777.	4.6	30
161	Fluorescence Assays for Biotransformations. , 0, , 1-19.		0