
Nikolai Bondar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5271267/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficient and sub-nanosecond resonance energy transfer in close-packed films of ZnSe quantum dots by steady-state and time-resolved spectroscopy. Superlattices and Microstructures, 2020, 138, 106382.	3.1	3
2	Electronic Excitation Energy Transfer in an Array of CdS Quantum Dots on a Quasi-Two-Dimensional Surface. Semiconductors, 2019, 53, 188-194.	0.5	4
3	Influence of a Capping Ligand on the Band Gap and Excitonic Levels in Colloidal Solutions and Films of ZnSe Quantum Dots. Ukrainian Journal of Physics, 2019, 64, 425.	0.2	1
4	Phase Per Colation Transition and Emission of Excitons in Films With CdS Quantum Dots on SiO2 Surface. Journal of Applied Spectroscopy, 2018, 85, 875-879.	0.7	0
5	Percolation Threshold and Luminescence in Films of Binary Mixtures of Spherical Particles Covered with Quantum Dots. Ukrainian Journal of Physics, 2017, 62, 874-882.	0.2	0
6	Photoluminescence and Confinement of Excitons in Disordered Porous Films. Semiconductors, 2016, 50, 364-371.	0.5	3
7	Quantum-Size Effect and Exciton Percolation in Porous and Disordered Films on the Basis of Spherical "Core/Shell―Elements. Ukrainian Journal of Physics, 2015, 60, 648-655.	0.2	1
8	Exciton photoluminescence and energy in a percolation cluster of ZnSe quantum dots as a fractal object. Semiconductors, 2012, 46, 625-630.	0.5	1
9	Percolation and excitonic luminescence in SiO2/ZnO two-phase structures with a high density of quantum dots randomly distributed over a spherical surface. Semiconductors, 2011, 45, 474-480.	0.5	5
10	Emission and percolation of excitons in dense sensembles of quantum dots on the spherical surface. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 43, 1882-1886.	2.7	4
11	Free and bound states of excitons in a percolation cluster of ZnSe quantum dots in a dielectric matrix. Low Temperature Physics, 2011, 37, 1026-1031.	0.6	2
12	Evolution of exciton states near the percolation threshold in two-phase systems with II–VI semiconductor quantum dots. Semiconductors, 2010, 44, 884-892.	0.5	18
13	Photoluminescence quantum and surface states of excitons in ZnSe and CdS nanoclusters. Journal of Luminescence, 2010, 130, 1-7.	3.1	23
14	Evolution of excitonic states in two-phase systems with quantum dots of Il–VI semiconductors near the percolation threshold. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 1549-1554.	2.7	20
15	Emission and energy relaxation of excitons in quantum dots with disordered interfaces grown in a low-permittivity matrix. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2010, 108, 728-734.	0.6	0
16	Formation of clusters and the percolation threshold in a two-phase system with a random distribution of ZnSe quantum points. Low Temperature Physics, 2009, 35, 232-237.	0.6	4
17	Quantum and surface states of charge carriers in the optical spectra of nanoclusters in a low-permittivity matrix. Low Temperature Physics, 2008, 34, 55-62.	0.6	6
18	Contributions of the interior and surface states of charge carriers to the emission spectra of CdS quantum dots in borosilicate glasses. Semiconductors, 2006, 40, 934-940.	0.5	5

Nikolai Bondar

#	Article	IF	CITATIONS
19	Exciton photoluminescence of ZnSe and CdS quantum dots in borosilicate glasses prepared by the sol-gel method. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2004, 97, 572-579.	0.6	9
20	Local exciton states at isoelectronic centers in superlattices. Low Temperature Physics, 2004, 30, 171-178.	0.6	1
21	<title>Photostructural transformations in amorphous Ge-S thin films: a photoluminescence
study</title> . , 2003, , .		0
22	Bond-conversion model for photoinduced effects in glassy Ge–S chalcogenides. Journal of Molecular Structure, 2000, 555, 175-178.	3.6	13
23	Exciton energy states and photoluminescence spectra of the strained-layer ZnS-ZnSe superlattices. Semiconductors, 2000, 34, 568-574.	0.5	6
24	Effect of localized-exciton energy relaxation on the emission spectrum of ZnS-ZnSe single quantum wells. Physics of the Solid State, 2000, 42, 1529-1534.	0.6	3
25	Localized excitonic states in ZnS–ZnSe single quantum wells. Superlattices and Microstructures, 1998, 24, 143-147.	3.1	6
26	Photostructural transformations in amorphous Ge-S thin films: a light-scattering study. , 1998, 3359, 355.		0
27	Photoluminescence of localized exitons in coherently strained ZnS-ZnSe/GaAs(001) quantum wells. Semiconductors, 1997, 31, 1244-1246.	0.5	0
28	Optical studies of ZnSe-ZnSGaAs(100) single quantum wells grown by photo-assisted vapor phase epitaxy. Solid State Communications, 1995, 96, 793-798.	1.9	14
29	Optical characteristics of chalcogenide quantum-well structures grown by laser-induced vapor-phase epitaxy. Quantum Electronics, 1993, 23, 543-544.	1.0	1