List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5271262/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Thetaâ€Shaped Amphiphilic Cobaltabisdicarbollide Anion: Transition From Monolayer Vesicles to Micelles. Angewandte Chemie - International Edition, 2011, 50, 5298-5300.	13.8	161
2	How to explain microemulsions formed by solvent mixtures without conventional surfactants. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4260-4265.	7.1	160
3	Loading of Silica Nanoparticles in Block Copolymer Vesicles during Polymerization-Induced Self-Assembly: Encapsulation Efficiency and Thermally Triggered Release. Journal of the American Chemical Society, 2015, 137, 16098-16108.	13.7	147
4	Supramolecular Polymers as Surface Coatings: Rapid Fabrication of Healable Superhydrophobic and Slippery Surfaces. Advanced Materials, 2014, 26, 7358-7364.	21.0	126
5	Proteinâ^ Protein Interactions in Ovalbumin Solutions Studied by Small-Angle Scattering: Effect of Ionic Strength and the Chemical Nature of Cations. Journal of Physical Chemistry B, 2010, 114, 3776-3783.	2.6	95
6	Hydration and interactions in protein solutions containing concentrated electrolytes studied by small-angle scattering. Physical Chemistry Chemical Physics, 2012, 14, 2483.	2.8	82
7	Self-Aggregation of Mixtures of Oppositely Charged Polyelectrolytes and Surfactants Studied by Rheology, Dynamic Light Scattering and Small-Angle Neutron Scattering. Langmuir, 2011, 27, 4386-4396.	3.5	78
8	Two-Dimensional Aggregation and Semidilute Ordering in Cellulose Nanocrystals. Langmuir, 2016, 32, 442-450.	3.5	76
9	Direct Observation of Correlated Interdomain Motion in Alcohol Dehydrogenase. Physical Review Letters, 2008, 101, 138102.	7.8	75
10	Self-Assembly Mechanism of pH-Responsive Glycolipids: Micelles, Fibers, Vesicles, and Bilayers. Langmuir, 2016, 32, 10881-10894.	3.5	73
11	pH-Driven Self-Assembly of Acidic Microbial Glycolipids. Langmuir, 2016, 32, 6343-6359.	3.5	66
12	Self-assembly, phase behaviour and structural behaviour as observed by scattering for classical and non-classical microemulsions. Advances in Colloid and Interface Science, 2017, 247, 374-396.	14.7	63
13	Formation and structure of slightly anionically charged nanoemulsions obtained by the phase inversion concentration (PIC) method. Soft Matter, 2011, 7, 5697.	2.7	59
14	Noncanonical Self-Assembly of Highly Asymmetric Genetically Encoded Polypeptide Amphiphiles into Cylindrical Micelles. Nano Letters, 2014, 14, 6590-6598.	9.1	59
15	Catenation and Aggregation of Multiâ€Cavity Coordination Cages. Angewandte Chemie - International Edition, 2018, 57, 13652-13656.	13.8	59
16	Conformational States of ABC Transporter MsbA in a Lipid Environment Investigated by Small-Angle Scattering Using Stealth Carrier Nanodiscs. Structure, 2018, 26, 1072-1079.e4.	3.3	58
17	Interfibrillar stiffening of echinoderm mutable collagenous tissue demonstrated at the nanoscale. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6362-E6371.	7.1	57
18	Probing the Microstructure of Nonionic Microemulsions with Ethyl Oleate by Viscosity, ROESY, DLS, SANS, and Cyclic Voltammetry. Langmuir, 2012, 28, 10640-10652.	3.5	56

#	Article	IF	CITATIONS
19	Amphiphilic Dual Brush Block Copolymers as "Giant Surfactants―and Their Aqueous Self-Assembly. Langmuir, 2010, 26, 3145-3155.	3.5	54
20	Well defined hybrid PNIPAM core-shell microgels: size variation of the silica nanoparticle core. Colloid and Polymer Science, 2011, 289, 699-709.	2.1	50
21	Microemulsions as Reaction Media for the Synthesis of Mixed Oxide Nanoparticles: Relationships between Microemulsion Structure, Reactivity, and Nanoparticle Characteristics. Langmuir, 2013, 29, 1779-1789.	3.5	50
22	SANS investigation of the microstructures in catanionic mixtures of SDS/DTAC and the effect of various added salts. Journal of Colloid and Interface Science, 2009, 337, 472-484.	9.4	49
23	Self-Assembly of Short Chain Poly- <i>N</i> -isopropylacrylamid Induced by Superchaotropic Keggin Polyoxometalates: From Globules to Sheets. Journal of the American Chemical Society, 2019, 141, 6890-6899.	13.7	49
24	Magnetic microemulsions based on magnetic ionic liquids. Physical Chemistry Chemical Physics, 2012, 14, 15355.	2.8	47
25	Aqueous Laponite Clay Dispersions in the Presence of Poly(ethylene oxide) or Poly(propylene oxide) Oligomers and their Triblock Copolymers. Journal of Physical Chemistry B, 2008, 112, 9328-9336.	2.6	46
26	Three-dimensional Telomere Signatures of Hodgkin- and Reed-Sternberg Cells at Diagnosis Identify Patients with Poor Response to Conventional Chemotherapy. Translational Oncology, 2012, 5, 269-277.	3.7	46
27	Coassembly of Poly(ethylene oxide)-block-poly(methacrylic acid) and N-Dodecylpyridinium Chloride in Aqueous Solutions Leading to Ordered Micellar Assemblies within Copolymer Aggregates. Macromolecules, 2012, 45, 6471-6480.	4.8	46
28	Chitosan/Alkylethoxy Carboxylates: A Surprising Variety of Structures. Langmuir, 2014, 30, 1778-1787.	3.5	42
29	Spatially modulated structural colour in bird feathers. Scientific Reports, 2015, 5, 18317.	3.3	41
30	Small-angle scattering and morphologies of ultra-flexible microemulsions. Journal of Applied Crystallography, 2016, 49, 2063-2072.	4.5	40
31	Characterization of iron–organic matter nano-aggregate networks through a combination of SAXS/SANS and XAS analyses: impact on As binding. Environmental Science: Nano, 2017, 4, 938-954.	4.3	39
32	Structural Characterization of Pluronic Micelles Swollen with Perfume Molecules. Langmuir, 2018, 34, 13395-13408.	3.5	38
33	Morphologies Observed in Ultraflexible Microemulsions with and without the Presence of a Strong Acid. ACS Central Science, 2016, 2, 467-475.	11.3	37
34	Porosity of silica Stöber particles determined by spin-echo small angle neutron scattering. Soft Matter, 2016, 12, 4709-4714.	2.7	36
35	Shaping Vesicles–Controlling Size and Stability by Admixture of Amphiphilic Copolymer. ACS Nano, 2012, 6, 5858-5865.	14.6	35
36	Effect of Hydrophilic Monomer Distribution on Selfâ€Assembly of a pHâ€Responsive Copolymer: Spheres, Worms and Vesicles from a Single Copolymer Composition. Angewandte Chemie - International Edition, 2021, 60, 4925-4930.	13.8	35

#	Article	IF	CITATIONS
37	Low-temperature dynamics of magnetic colloids studied by time-resolved small-angle neutron scattering. Physical Review B, 2008, 77, .	3.2	34
38	Influence of additives on the structure of surfactant-free microemulsions. Physical Chemistry Chemical Physics, 2015, 17, 32528-32538.	2.8	34
39	From Crab Shells to Smart Systems: Chitosan–Alkylethoxy Carboxylate Complexes. Langmuir, 2014, 30, 10608-10616.	3.5	33
40	Mesodynamics: watching vesicle formation in situ by small-angle neutron scattering. Colloid and Polymer Science, 2010, 288, 827-840.	2.1	31
41	Synthesis and self-assembly of amphiphilic semi-brush and dual brush block copolymers in solution and on surfaces. Polymer Chemistry, 2011, 2, 137-147.	3.9	31
42	Formation of Monodisperse Charged Vesicles in Mixtures of Cationic Gemini Surfactants and Anionic SDS. Langmuir, 2011, 27, 582-591.	3.5	31
43	Breakdown and buildup mechanisms of cellulose nanocrystal suspensions under shear and upon relaxation probed by SAXS and SALS. Carbohydrate Polymers, 2021, 260, 117751.	10.2	31
44	Long-Range Electrostatic Colloidal Interactions and Specific Ion Effects in Deep Eutectic Solvents. Journal of the American Chemical Society, 2021, 143, 14158-14168.	13.7	31
45	In Situ Probing of Stack-Templated Growth of Ultrathin Cu _{2–<i>x</i>} S Nanosheets. Chemistry of Materials, 2016, 28, 6381-6389.	6.7	29
46	Solubilization of active ingredients of different polarity in Pluronic® micellar solutions – Correlations between solubilizate polarity and solubilization site. Journal of Colloid and Interface Science, 2016, 477, 94-102.	9.4	29
47	Micelles versus Ribbons: How Congeners Drive the Selfâ€Assembly of Acidic Sophorolipid Biosurfactants. ChemPhysChem, 2017, 18, 643-652.	2.1	29
48	Interaction of the Saponin Aescin with Ibuprofen in DMPC Model Membranes. Molecular Pharmaceutics, 2018, 15, 4446-4461.	4.6	29
49	Small Angle Neutron Scattering, X-ray Diffraction, Differential Scanning Calorimetry, and Thermogravimetry Studies to Characterize the Properties of Clay Nanocomposites. Journal of Physical Chemistry C, 2009, 113, 12213-12219.	3.1	28
50	Liquid–liquid phase separation morphologies in ultra-white beetle scales and a synthetic equivalent. Communications Chemistry, 2019, 2, .	4.5	28
51	Aescin-Cholesterol Complexes in DMPC Model Membranes: A DSC and Temperature-Dependent Scattering Study. Scientific Reports, 2019, 9, 5542.	3.3	28
52	Bilayer undulation dynamics in unilamellar phospholipid vesicles: Effect of temperature, cholesterol and trehalose. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 2412-2419.	2.6	27
53	Nanoscale Platelet Formation by Monounsaturated and Saturated Sophorolipids under Basic pH Conditions. Chemistry - A European Journal, 2015, 21, 19265-19277.	3.3	27
54	Oleylethoxycarboxylate – An efficient surfactant for copper extraction and surfactant recycling via micellar enhanced ultrafiltration. Journal of Colloid and Interface Science, 2014, 421, 184-190.	9.4	26

#	Article	IF	CITATIONS
55	Magainin 2 and PGLa in Bacterial Membrane Mimics II: Membrane Fusion and Sponge Phase Formation. Biophysical Journal, 2020, 118, 612-623.	0.5	25
56	Aggregation Behavior of E-SARA Asphaltene Fractions Studied by Small-Angle Neutron Scattering. Energy & Fuels, 2020, 34, 6894-6903.	5.1	25
57	Morphology of bile salts micelles and mixed micelles with lipolysis products, from scattering techniques and atomistic simulations. Journal of Colloid and Interface Science, 2021, 587, 522-537.	9.4	25
58	Structure of reverse microemulsion-templated metal hexacyanoferrate nanoparticles. Nanoscale Research Letters, 2012, 7, 83.	5.7	24
59	Multi-speckle X-ray photon correlation spectroscopyÂin the ultra-small-angle X-ray scatteringÂrange. Journal of Synchrotron Radiation, 2016, 23, 929-936.	2.4	24
60	Temperature dependent self-organization of DMPC membranes promoted by intermediate amounts of the saponin aescin. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 897-906.	2.6	24
61	Reconstruction of the Disassembly Pathway of an Icosahedral Viral Capsid and Shape Determination of Two Successive Intermediates. Journal of Physical Chemistry Letters, 2015, 6, 3471-3476.	4.6	23
62	Combined molecular dynamics (MD) and small angle scattering (SAS) analysis of organization on a nanometer-scale in ternary solvent solutions containing a hydrotrope. Journal of Colloid and Interface Science, 2019, 540, 623-633.	9.4	23
63	Aescin-Induced Conversion of Gel-Phase Lipid Membranes into Bicelle-like Lipid Nanoparticles. Langmuir, 2019, 35, 16244-16255.	3.5	22
64	Synthesis and physico-chemical properties of poly(N-vinyl pyrrolidone)-based hydrogels with titania nanoparticles. Journal of Materials Science, 2020, 55, 3005-3021.	3.7	22
65	Single-molecule lamellar hydrogels from bolaform microbial glucolipids. Soft Matter, 2020, 16, 2528-2539.	2.7	22
66	Spontaneous Ouzo Emulsions Coexist with Pre-Ouzo Ultraflexible Microemulsions. Langmuir, 2021, 37, 3817-3827.	3.5	22
67	Synthesis of Linear Polyamines with Different Amine Spacings and their Ability to Form dsDNA/siRNA Complexes Suitable for Transfection. Macromolecular Bioscience, 2010, 10, 1073-1083.	4.1	21
68	In situ observation of self-assembly of sugars and surfactants from nanometres to microns. Soft Matter, 2017, 13, 2421-2425.	2.7	21
69	Preparation of Polymer Brush Grafted Anionic or Cationic Silica Nanoparticles: Systematic Variation of the Polymer Shell. Macromolecules, 2018, 51, 6936-6948.	4.8	21
70	Inward growth by nucleation: Multiscale self-assembly of ordered membranes. Science Advances, 2018, 4, eaat1817.	10.3	21
71	<i>SASET</i> : a program for series analysis of small-angle scattering data. Journal of Applied Crystallography, 2013, 46, 1187-1195.	4.5	20
72	Small monodisperse unilamellar vesicles from binary copolymer mixtures. Soft Matter, 2009, 5, 4169.	2.7	19

5

#	Article	IF	CITATIONS
73	Effect of Polymer Chain Density on Protein–Polymer Conjugate Conformation. Biomacromolecules, 2019, 20, 1944-1955.	5.4	19
74	Morphological and crystallographic orientation of hematite spindles in an applied magnetic field. Nanoscale, 2019, 11, 7149-7156.	5.6	19
75	Control of Rheological Behaviour with Oppositely Charged Polyelectrolyte Surfactant Mixtures. Tenside, Surfactants, Detergents, 2011, 48, 488-494.	1.2	19
76	Phase behaviour and structure of zwitanionic mixtures of perfluorocarboxylates and tetradecyldimethylamine oxide—dependence on chain length of the perfluoro surfactant. Soft Matter, 2011, 7, 11232.	2.7	18
77	Interactions of silica nanoparticles with poly(ethylene oxide) and poly(acrylic acid): Effect of the polymer molecular weight and of the surface charge. Journal of Colloid and Interface Science, 2013, 394, 85-93.	9.4	18
78	On the mesoscopic origins of high viscosities in some polyelectrolyte-surfactant mixtures. Journal of Chemical Physics, 2015, 143, 074902.	3.0	18
79	Experimental validation of biocompatible nanostructured lipid carriers of sophorolipid: Optimization, characterization and in-vitro evaluation. Colloids and Surfaces B: Biointerfaces, 2019, 181, 845-855.	5.0	18
80	Nonionic metal-chelating surfactants mediated solvent-free thermo-induced separation of uranyl. New Journal of Chemistry, 2007, 31, 1424.	2.8	17
81	Aggregation behaviour of hydrophobically modified polyacrylate – Variation of alkyl chain length. Polymer, 2015, 70, 194-206.	3.8	17
82	Glucosomes: Glycosylated Vesicleâ€inâ€Vesicle Aggregates in Water from pHâ€Responsive Microbial Glycolipid. ChemistryOpen, 2017, 6, 526-533.	1.9	17
83	Deep eutectic solvents for the preservation of concentrated proteins: the case of lysozyme in 1 : 2 choline chloride : glycerol. Green Chemistry, 2022, 24, 4437-4442.	9.0	17
84	Aqueous Block Copolymerâ^'Surfactant Mixtures and Their Ability in Solubilizing Chlorinated Organic Compounds. A Thermodynamic and SANS Study. Journal of Physical Chemistry B, 2006, 110, 25883-25894.	2.6	16
85	Relaxation mechanisms in magnetic colloids studied by stroboscopic spin-polarized small-angle neutron scattering. Physical Review B, 2011, 84, .	3.2	16
86	Dissipative dynamics of fluid lipid membranes enriched in cholesterol. Advances in Colloid and Interface Science, 2017, 247, 514-520.	14.7	15
87	pH- and Time-Resolved <i>in Situ</i> SAXS Study of Self-Assembled Twisted Ribbons Formed by Elaidic Acid Sophorolipids. Langmuir, 2018, 34, 2121-2131.	3.5	15
88	Wettability of Magnetite Nanoparticles Guides Growth from Stabilized Amorphous Ferrihydrite. Journal of the American Chemical Society, 2021, 143, 10963-10969.	13.7	15
89	Salt-induced cluster formation of gold nanoparticles followed by stopped-flow SAXS, DLS and extinction spectroscopy. Physical Chemistry Chemical Physics, 2017, 19, 16348-16357.	2.8	15
90	Selectivity of cyclodextrins as a parameter to tune the formation of pseudorotaxanes and micelles supramolecular assemblies. A systematic SANS study. Soft Matter, 2011, 7, 6082.	2.7	14

#	Article	IF	CITATIONS
91	Selfâ€Assembly of Imidazoliumâ€Based Surfactants in Magnetic Roomâ€Temperature Ionic Liquids: Binary Mixtures. ChemPhysChem, 2014, 15, 4032-4041.	2.1	14
92	Direct synthesis of different metal hexacyanoferrate nanoparticles in reverse microemulsions by using a ferrocyanide functionalized surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 444, 63-68.	4.7	14
93	Liquid-liquid phase separation in dilute solutions of poly(styrene sulfonate) with multivalent cations: Phase diagrams, chain morphology, and impact of temperature. Journal of Chemical Physics, 2018, 148, 014901.	3.0	14
94	A Small-Angle Neutron Scattering Environment for In-Situ Observation of Chemical Processes. Scientific Reports, 2018, 8, 7299.	3.3	14
95	Phase Behavior of Nonionic Microemulsions with Multi-end-capped Polymers and Its Relation to the Mesoscopic Structure. Langmuir, 2015, 31, 5198-5209.	3.5	13
96	Hydrophobically modified polyacrylates (hmPAAs) with long alkyl chains – Self-assembly in aqueous solution. Polymer, 2017, 128, 78-86.	3.8	13
97	Neutralisation rate controls the self-assembly of pH-sensitive surfactants. Soft Matter, 2019, 15, 8611-8620.	2.7	13
98	Effect of lipid chain length on nanostructured lipid carriers: Comprehensive structural evaluation by scattering techniques. Journal of Colloid and Interface Science, 2019, 534, 95-104.	9.4	13
99	Structures of a deAMPylation complex rationalise the switch between antagonistic catalytic activities of FICD. Nature Communications, 2021, 12, 5004.	12.8	13
100	The Use of Highly Ordered Vesicle Gels as Template for the Formation of Silica Gels. Langmuir, 2011, 27, 8885-8897.	3.5	12
101	Understanding and Optimizing Microemulsions with Magnetic Room Temperature Ionic Liquids (MRTILs). Journal of Physical Chemistry B, 2015, 119, 4133-4142.	2.6	12
102	Impact of Antimicrobial Peptides on E.coli-mimicking Lipid Model Membranes: correlating structural and dynamic effects using scattering methods. Faraday Discussions, 2020, , .	3.2	12
103	Shape and Structure Formation of Mixed Nonionic–Anionic Surfactant Micelles. Molecules, 2021, 26, 4136.	3.8	12
104	Reversible changes in the 3D collagen fibril architecture during cyclic loading of healthy and degraded cartilage. Acta Biomaterialia, 2021, 136, 314-326.	8.3	12
105	Persistent nucleation and size dependent attachment kinetics produce monodisperse PbS nanocrystals. Chemical Science, 2022, 13, 4977-4983.	7.4	12
106	Lactoferricins impair the cytosolic membrane of Escherichia coli within a few seconds and accumulate inside the cell. ELife, 0, 11, .	6.0	12
107	Colloidal Structure and Stability of DNA/Polycations Polyplexes Investigated by Small Angle Scattering. Biomacromolecules, 2011, 12, 4272-4282.	5.4	11
108	Poly-NIPAM Microgels with Different Cross-Linker Densities. , 2013, , 63-76.		11

7

#	Article	IF	CITATIONS
109	Form factor of cylindrical superstructures composed of globular particles. Journal of Applied Crystallography, 2014, 47, 827-834.	4.5	11
110	Melts of single-chain nanoparticles: A neutron scattering investigation. Journal of Applied Physics, 2020, 127, .	2.5	11
111	Physicochemical stimuli as tuning parameters to modulate the structure and stability of nanostructured lipid carriers and release kinetics of encapsulated antileprosy drugs. Journal of Materials Chemistry B, 2019, 7, 6539-6555.	5.8	10
112	Aescin – a natural soap for the formation of lipid nanodiscs with tunable size. Soft Matter, 2021, 17, 1888-1900.	2.7	10
113	Polymerization-Induced Self-Assembly (PISA) for in situ drug encapsulation or drug conjugation in cancer application. Journal of Colloid and Interface Science, 2022, 618, 173-184.	9.4	10
114	Concentration dependent morphology and composition of <i>n</i> -alcohol modified cetyltrimethylammonium bromide micelles. Journal of Physics Condensed Matter, 2018, 30, 495001.	1.8	9
115	On the Mechanism of Shear-Thinning in Viscous Oppositely Charged Polyelectrolyte Surfactant Complexes (PESCs). Journal of Physical Chemistry B, 2020, 124, 909-913.	2.6	9
116	The fuzzy sphere morphology is responsible for the increase in light scattering during the shrinkage of thermoresponsive microgels. Soft Matter, 2022, 18, 807-825.	2.7	9
117	Solubilisation of Oils of Different Polarity in Aqueous Solutions of Pluronic Triblock Copolymers. Zeitschrift Fur Physikalische Chemie, 2012, 226, 675-694.	2.8	8
118	The influence of polymers, surfactants and salt on the fine structure of cotton revealed by SANS. Colloids and Surfaces B: Biointerfaces, 2012, 91, 175-180.	5.0	8
119	"Nanosized latexes for textile printing applications obtained by miniemulsion polymerization― Colloid and Polymer Science, 2014, 292, 1487-1500.	2.1	8
120	Dynamics of small unilamellar vesicles. Journal of Chemical Physics, 2018, 148, 104901.	3.0	8
121	Direct Observation of Dynamic Tube Dilation in Entangled Polymer Blends: A Combination of Neutron Scattering and Dielectric Techniques. Physical Review Letters, 2019, 123, 187802.	7.8	8
122	Effect of Cholesterol and Ibuprofen on DMPC-β-Aescin Bicelles: A Temperature-Dependent Wide-Angle X-ray Scattering Study. Crystals, 2020, 10, 401.	2.2	8
123	Tube Dilation in Isofrictional Polymer Blends Based on Polyisoprene with Different Topologies: Combination of Dielectric and Rheological Spectroscopy, Pulsed-Field-Gradient NMR, and Neutron Spin Echo (NSE) Techniques. Macromolecules, 2020, 53, 5919-5936.	4.8	8
124	Evolution of the analytical scattering model of live <i>Escherichia coli</i> . Journal of Applied Crystallography, 2021, 54, 473-485.	4.5	8
125	Refractive index matched, nearly hard polymer colloids. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 475, 20180763.	2.1	7
126	An integrative toolbox to unlock the structure and dynamics of protein–surfactant complexes. Nanoscale Advances, 2020, 2, 4011-4023.	4.6	7

#	Article	IF	CITATIONS
127	Quantifying the chemical, electrochemical heterogeneity and spatial distribution of (poly) sulfide species using Operando SANS. Energy Storage Materials, 2021, 40, 219-228.	18.0	7
128	The viscoelastic signature underpinning polymer deformation under shear flow. Soft Matter, 2019, 15, 371-380.	2.7	6
129	Invertible Micelles Based on Ion-Specific Interactions of Sr2+ and Ba2+ with Double Anionic Block Copolyelectrolytes. Macromolecules, 2019, 52, 8759-8770.	4.8	6
130	Structure and dynamics of titania – poly(<i>N</i> -vinyl caprolactam) composite hydrogels. Soft Matter, 2020, 16, 219-228.	2.7	6
131	Comparison of small-angle neutron and X-ray scattering for studying cortical bone nanostructure. Scientific Reports, 2020, 10, 14552.	3.3	6
132	Contrast variation of micelles composed of Ca2+ and block copolymers of two negatively charged polyelectrolytes. Colloid and Polymer Science, 2020, 298, 663-679.	2.1	6
133	Polypeptide hybrid copolymers as selective micellar nanocarriers in nonaqueous media. Colloid and Polymer Science, 2009, 287, 1295-1304.	2.1	5
134	Catalytic hydrogenation of dimethyl itaconate in non-ionic microemulsions: influence of the size of micelle. New Journal of Chemistry, 2009, 33, 1726.	2.8	5
135	Solubilisation of different medium chain esters in zwitterionic surfactant solutions – Effects on phase behaviour and structure. Journal of Colloid and Interface Science, 2011, 364, 148-156.	9.4	5
136	Hemimegalencephaly in an adult with normal intellectual function and mild epilepsy. Developmental Medicine and Child Neurology, 2012, 54, 284-286.	2.1	5
137	Indirect Fourier transform in the context of statistical inference. Acta Crystallographica Section A: Foundations and Advances, 2016, 72, 557-569.	0.1	5
138	Ion-selective binding as a new trigger for micellization of block copolyelectrolytes with two anionic blocks. Soft Matter, 2019, 15, 8266-8271.	2.7	5
139	Molecular Changes in Dengue Envelope Protein Domain III upon Interaction with Glycosaminoglycans. Pathogens, 2020, 9, 935.	2.8	5
140	Synergistic structures in lyotropic lamellar gels. Soft Matter, 2020, 16, 10268-10279.	2.7	5
141	Chain Dynamics of Ultrahigh Molecular Weight Polyethylene Composites with Graphene Oxide Nanosheets. ACS Macro Letters, 2021, 10, 460-465.	4.8	5
142	Structural Insights into Polymethacrylamide-Based LCST Polymers in Solution: A Small-Angle Neutron Scattering Study. Macromolecules, 2021, 54, 7632-7641.	4.8	5
143	Theory of Ternary Fluids under Centrifugal Fields. Journal of Physical Chemistry B, 2021, 125, 12054-12062.	2.6	5
144	Cloud point, auto-coacervation, and nematic ordering of micelles formed by ethylene oxide containing carboxylate surfactants. Journal of Colloid and Interface Science, 2022, 621, 470-488.	9.4	5

#	Article	IF	CITATIONS
145	Thermo-responsive Metal-chelating Surfactants: Properties and Use in Cloud Point Extraction of Uranyl Nitrateâ^—. Tenside, Surfactants, Detergents, 2009, 46, 100-104.	1.2	4
146	Liver Trapping of 99mTc Macroaggregated Albumin During Ventilation/Perfusion Scintigraphy in a Patient With Superior Vena Cava Stenosis as Demonstrated by SPECT/CT. Clinical Nuclear Medicine, 2015, 40, e366-e369.	1.3	4
147	Synergism between Magainin 2 and PGLa in Bacterial Membrane Mimics Leads to Membrane Fusion and Sponge Phase Formation. Biophysical Journal, 2020, 118, 343a.	0.5	4
148	Adsorption Kinetics of Oppositely Charged Hard and Soft Nanoparticles with Phospholipid Membranes. Langmuir, 2021, 37, 2800-2809.	3.5	4
149	A neutron scattering perspective on the structure, softness and dynamics of the ligand shell of PbS nanocrystals in solution. Chemical Science, 2020, 11, 8875-8884.	7.4	3
150	Small-angle neutron scattering measurements of mixtures of hydrogenous and deuterated <i>n</i> -tetradecane. Journal of Applied Crystallography, 2021, 54, 541-547.	4.5	3
151	A temperature-controlled electric field sample environment for small-angle neutron scattering experiments. Review of Scientific Instruments, 2021, 92, 033903.	1.3	3
152	Inside Cover: A Theta-Shaped Amphiphilic Cobaltabisdicarbollide Anion: Transition From Monolayer Vesicles to Micelles (Angew. Chem. Int. Ed. 23/2011). Angewandte Chemie - International Edition, 2011, 50, 5228-5228.	13.8	2
153	Reply to the â€ [~] Comment on "Physicochemical stimuli as tuning parameters to modulate the structure and stability of nanostructured lipid carriers and release kinetics of encapsulated antileprosy drugsâ€â€ [™] by J. Kang and A. M. Kang, J. Mater. Chem. B, 2020, 8, DOI: 10.1039/D0TB01160F. Journal of Materials Chemistry B, 2020, 8, 10209-10210.	5.8	2
154	Antimicrobial Peptides Impair Bacteria Cell Structures within Seconds. Biophysical Journal, 2020, 118, 234a.	0.5	2
155	Directed Assembly of Multiâ€Walled Nanotubes and Nanoribbons of Amino Acid Amphiphiles Using a Layerâ€byâ€Layer Approach. Chemistry - A European Journal, 2021, 27, 6904-6910.	3.3	2
156	Oscillatory Structural Forces Across Dispersions of Micelles With Variable Surface Charge. , 0, 2, .		2
157	Einfluss der Verteilung hydrophiler Monomere auf die Selbstassemblierung eines pHâ€responsiven Copolymers: Kugeln, WAI⁄armer und Vesikel aus einer einzigen Copolymerkomposition. Angewandte Chemie, 2021, 133, 4975-4981.	2.0	1
158	Insight into the Structure of a Comb Copolymer–Surfactant Coacervate from Dynamic Measurements by DOSY NMR and Neutron Spin Echo Spectroscopy. Macromolecules, 0, , .	4.8	1
159	Stroboscopic Small Angle Neutron Scattering Investigations of Microsecond Dynamics in Magnetic Nanomaterials. Springer Series in Solid-state Sciences, 2009, , 241-263.	0.3	0
160	3d Telomere Signatures of Hodgkin-Cells at Diagnosis Identify Patients with Poor Response to Conventional Chemotherapy. Annals of Oncology, 2012, 23, ix350.	1.2	0
161	Investigations in the Stranski-Laboratorium of the TU Berlin – Physical Chemistry of Colloidal Systems – Going Towards Complexity and Functionality. Tenside, Surfactants, Detergents, 2012, 49, 256-265.	1.2	0
162	Short-chain branched sulfosuccinate as missing link between surfactants and hydrotropes. Physical Chemistry Chemical Physics, 2022, , .	2.8	0