Astrid Dürauer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5271075/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of hydrodynamics and volumetric power input in microtiter plates for the scaleâ€up of downstream operations. Biotechnology and Bioengineering, 2022, 119, 523-534.	3.3	6
2	Mass transfer of proteins in chromatographic media: Comparison of pure and crude feed solutions. Journal of Chromatography A, 2022, 1676, 463264.	3.7	4
3	Separation of truncated basic fibroblast growth factor from the full-length protein by hydrophobic interaction chromatography. Separation and Purification Technology, 2021, 254, 117564.	7.9	6
4	Technology transfer of a monitoring system to predict product concentration and purity of biopharmaceuticals in realâ€ŧime during chromatographic separation. Biotechnology and Bioengineering, 2021, 118, 3941-3952.	3.3	3
5	Hybrid modeling reduces experimental effort to predict performance of serial and parallel single-pass tangential flow filtration. Separation and Purification Technology, 2021, 276, 119277.	7.9	16
6	Hybrid Modeling for Simultaneous Prediction of Flux, Rejection Factor and Concentration in Two-Component Crossflow Ultrafiltration. Processes, 2020, 8, 1625.	2.8	7
7	Hybrid modeling of cross-flow filtration: Predicting the flux evolution and duration of ultrafiltration processes. Separation and Purification Technology, 2020, 248, 117064.	7.9	32
8	Scale up of a chromatographic capture step for a clarified bacterial homogenate – Influence of mass transport limitation and competitive adsorption of impurities. Journal of Chromatography A, 2020, 1618, 460856.	3.7	11
9	A two-step process for capture and purification of human basic fibroblast growth factor from E. coli homogenate: Yield versus endotoxin clearance. Protein Expression and Purification, 2019, 153, 70-82.	1.3	23
10	Realâ€ŧime monitoring and modelâ€based prediction of purity and quantity during a chromatographic capture of fibroblast growth factor 2. Biotechnology and Bioengineering, 2019, 116, 1999-2009.	3.3	29
11	Prediction of the Quantity and Purity of an Antibody Capture Process in Real Time. Biotechnology Journal, 2019, 14, e1800521.	3.5	25
12	Osmolality is a predictor for modelâ€based real time monitoring of concentration in protein chromatography. Journal of Chemical Technology and Biotechnology, 2019, 95, 1146.	3.2	8
13	Influence of cavitation and high shear stress on HSA aggregation behavior. Engineering in Life Sciences, 2018, 18, 169-178.	3.6	31
14	Impact of Cavitation, High Shear Stress and Air/Liquid Interfaces on Protein Aggregation. Biotechnology Journal, 2018, 13, e1800062.	3.5	86
15	Integrated process development ―quality by design compliant evaluation of upstream variations at the microscale level. Journal of Chemical Technology and Biotechnology, 2018, 93, 2021-2032.	3.2	4
16	Prediction tool for loading, isocratic elution, gradient elution and scaling up of ion exchange chromatography of proteins. Journal of Chromatography A, 2018, 1566, 89-101.	3.7	18
17	Microscale disruption of microorganisms for parallelized process development. Biotechnology Journal, 2017, 12, 1600579.	3.5	5
18	Integrated process development—a robust, rapid method for inclusion body harvesting and processing at the microscale level. Preparative Biochemistry and Biotechnology, 2017, 47, 874-880.	1.9	2

Astrid Dürauer

#	Article	IF	CITATIONS
19	Trend analysis of performance parameters of pre-packed columns for protein chromatography over a time span of ten years. Journal of Chromatography A, 2016, 1465, 63-70.	3.7	12
20	Mixing at the microscale: Power input in shaken microtiter plates. Biotechnology Journal, 2016, 11, 1539-1549.	3.5	16
21	Npro fusion technology: On-column complementation to improve efficiency in biopharmaceutical production. Protein Expression and Purification, 2016, 120, 42-50.	1.3	6
22	Design and optimization of protein refolding with crossflow ultrafiltration. Chemical Engineering Science, 2015, 130, 290-300.	3.8	9
23	Prediction of inclusion body solubilization from shaken to stirred reactors. Biotechnology and Bioengineering, 2014, 111, 84-94.	3.3	14
24	Getting ready for PAT: Scale up and inline monitoring of protein refolding of Npro fusion proteins. Process Biochemistry, 2014, 49, 1113-1121.	3.7	27
25	Mechanism and model for solubilization of inclusion bodies. Chemical Engineering Science, 2013, 101, 631-641.	3.8	13
26	Matrix-assisted refolding of autoprotease fusion proteins on an ion exchange column: A kinetic investigation. Journal of Chromatography A, 2010, 1217, 5950-5956.	3.7	13
27	NproAutoprotease Fusion Technology: Development, Characteristics, and Influential Factors. Separation Science and Technology, 2010, 45, 2194-2209.	2.5	10
28	Refolding of N ^{pro} fusion proteins. Biotechnology and Bioengineering, 2009, 104, 774-784.	3.3	30
29	EDDIE fusion proteins: Triggering autoproteolytic cleavage. Process Biochemistry, 2009, 44, 1217-1224.	3.7	18
30	Highâ€ŧhroughput system for determining dissolution kinetics of inclusion bodies. Biotechnology Journal, 2009, 4, 722-729.	3.5	12
31	Yeast cell surface display system for determination of humoral response to active immunization with a monoclonal antibody against EpCAM. Journal of Proteomics, 2008, 70, 1109-1115.	2.4	2
32	Evaluation of a sensitive detection method for peptide arrays prepared by SPOT synthesis. Journal of Proteomics, 2006, 66, 45-57.	2.4	14
33	Peptide arrays for the determination of humoral responses induced by active immunization with a monoclonal antibody against EpCAM. Journal of Immunological Methods, 2006, 317, 114-125.	1.4	4
34	Adsorption isotherms of 17β-estradiol on granular activated carbon (GAC). Chemosphere, 2001, 44, 1573-1579.	8.2	65
35	Characterisation of the rubber elongation factor from ammoniated latex by electrophoresis and mass spectrometry. Journal of Chromatography A, 2000, 890, 145-158.	3.7	14
36	Monitoring of estrogen mimics by a recombinant yeast assay: synergy between natural and synthetic compounds?. Science of the Total Environment, 1999, 225, 69-79.	8.0	53

#	Article	IF	CITATIONS
37	Regulation of human estrogen receptor by phytoestrogens in yeast and human cells. Journal of Steroid Biochemistry and Molecular Biology, 1998, 67, 421-429.	2.5	82