Vinayak P Dravid

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5270858/vinayak-p-dravid-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

184 6,406 41 73 g-index

193 8,093 13.4 6.16 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
184	The emergence of valency in colloidal crystals through electron equivalents <i>Nature Materials</i> , 2022	27	10
183	Thermoelectric Performance of the 2D BiSiTe Semiconductor <i>Journal of the American Chemical Society</i> , 2022 ,	16.4	7
182	Extraordinary role of Zn in enhancing thermoelectric performance of Ga-doped n-type PbTe. <i>Energy and Environmental Science</i> , 2022 , 15, 368-375	35.4	12
181	Highly sensitive and ultra-rapid antigen-based detection of SARS-CoV-2 using nanomechanical sensor platform. <i>Biosensors and Bioelectronics</i> , 2022 , 195, 113647	11.8	6
180	Synergistic defect- and interfacial-engineering of a Bi2S3-based nanoplate network for high-performance photoelectrochemical solar water splitting. <i>Journal of Materials Chemistry A</i> , 2022 , 10, 7830-7840	13	Ο
179	Resonance Couplings in Si@MoS Core-Shell Architectures Small, 2022, e2200413	11	2
178	Ingrained: An Automated Framework for Fusing Atomic-Scale Image Simulations into Experiments <i>Small</i> , 2022 , e2102960	11	2
177	Perovskite-like KTiOF Exhibits (3 + 1)-Dimensional Commensurate Structure Induced by Octahedrally Coordinated Potassium Ions. <i>Journal of the American Chemical Society</i> , 2021 , 143, 18907-1	18918	0
176	Mechanistic Investigation of Molybdenum Disulfide Defect Photoluminescence Quenching by Adsorbed Metallophthalocyanines. <i>Journal of the American Chemical Society</i> , 2021 , 143, 17153-17161	16.4	2
175	Tuning of Optical Phonons in EMoO-VO Multilayers. <i>ACS Applied Materials & Description</i> 13, 48981-48987	9.5	4
174	Mixed Metal Thiophosphate FeCoPS: Role of Structural Evolution and Anisotropy. <i>Inorganic Chemistry</i> , 2021 , 60, 17268-17275	5.1	2
173	Quasi-Two-Dimensional Heterostructures (KM1IkTe)(LaTe3) (M = Mn and Zn) with Charge Density Waves. <i>Chemistry of Materials</i> , 2021 , 33, 2155-2164	9.6	1
172	Fluoridation of HfO. <i>Inorganic Chemistry</i> , 2021 , 60, 4463-4474	5.1	3
171	Implications of doping on microstructure, processing, and thermoelectric performance: The case of PbSe. <i>Journal of Materials Research</i> , 2021 , 36, 1272-1284	2.5	3
170	A Bidirectional Nanomodification Approach for Synthesizing Hierarchically Architected Mixed Oxide Electrodes for Oxygen Evolution. <i>Small</i> , 2021 , 17, e2007287	11	1
169	Ultralow Thermal Conductivity in Diamondoid Structures and High Thermoelectric Performance in (CuAg)(InGa)Te. <i>Journal of the American Chemical Society</i> , 2021 , 143, 5978-5989	16.4	15
168	First-Principles Hydrothermal Synthesis Design to Optimize Conditions and Increase the Yield of Quaternary Heteroanionic Oxychalcogenides. <i>Chemistry of Materials</i> , 2021 , 33, 2726-2741	9.6	1

(2021-2021)

167	Synthesis, Characterization, and Simulation of Four-Armed Megamolecules. <i>Biomacromolecules</i> , 2021 , 22, 2363-2372	6.9	1	
166	Structural defects in transition metal dichalcogenide core-shell architectures. <i>Applied Physics Letters</i> , 2021 , 118, 223103	3.4	4	
165	Making the Most of your Electrons: Challenges and Opportunities in Characterizing Hybrid Interfaces with STEM <i>Materials Today</i> , 2021 , 50, 100-115	21.8	3	
164	Shedding Light on the Stability and Structure P roperty Relationships of Two-Dimensional Hybrid Lead Bromide Perovskites. <i>Chemistry of Materials</i> , 2021 , 33, 5085-5107	9.6	9	
163	Valley-selective optical Stark effect of exciton-polaritons in a monolayer semiconductor. <i>Nature Communications</i> , 2021 , 12, 4530	17.4	3	
162	Synthetic Tuning of Domain Stoichiometry in Nanobody-Enzyme Megamolecules. <i>Bioconjugate Chemistry</i> , 2021 , 32, 143-152	6.3	2	
161	Strong Valence Band Convergence to Enhance Thermoelectric Performance in PbSe with Two Chemically Independent Controls. <i>Angewandte Chemie</i> , 2021 , 133, 272-277	3.6	6	
160	Strong Valence Band Convergence to Enhance Thermoelectric Performance in PbSe with Two Chemically Independent Controls. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 268-273	16.4	11	
159	Raspberry-like mesoporous Co-doped TiO2 nanospheres for a high-performance formaldehyde gas sensor. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 6529-6537	13	8	
158	Nanoscale chromatin imaging and analysis platform bridges 4D chromatin organization with molecular function. <i>Science Advances</i> , 2021 , 7,	14.3	13	
157	Mapping Grains, Boundaries, and Defects in 2D Covalent Organic Framework Thin Films <i>Chemistry of Materials</i> , 2021 , 33, 1341-1352	9.6	8	
156	Dissociation of GaSb in n-Type PbTe: off-Centered Gallium Atom and Weak Electron P honon Coupling Provide High Thermoelectric Performance. <i>Chemistry of Materials</i> , 2021 , 33, 1842-1851	9.6	11	
155	PS Reactive Flux Method for the Rapid Synthesis of Mono- and Bimetallic 2D Thiophosphates MM'PS. <i>Inorganic Chemistry</i> , 2021 , 60, 3502-3513	5.1	8	
154	Revealing High-Temperature Reduction Dynamics of High-Entropy Alloy Nanoparticles Transmission Electron Microscopy. <i>Nano Letters</i> , 2021 , 21, 1742-1748	11.5	8	
153	Degeneration Behavior of Cu Nanowires under Carbon Dioxide Environment: An / Study. <i>Nano Letters</i> , 2021 , 21, 6813-6819	11.5	2	
152	High-Performance MoC Electrocatalyst for Hydrogen Evolution Reaction Enabled by Surface Sulfur Substitution. <i>ACS Applied Materials & Mate</i>	9.5	7	
151	Hidden Complexity in the Chemistry of Ammonolysis-Derived EMo2NEAn Overlooked Oxynitride Hydride. <i>Chemistry of Materials</i> , 2021 , 33, 6671-6684	9.6	2	
150	Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal. <i>Nature Materials</i> , 2021 , 20, 1378-1384	27	79	

149	Spatial Mapping of Electrostatic Fields in 2D Heterostructures. <i>Nano Letters</i> , 2021 , 21, 7131-7137	11.5	1
148	Quantifying leakage fields at ionic grain boundaries using off-axis electron holography. <i>Journal of Applied Physics</i> , 2020 , 128, 214301	2.5	1
147	OHM Sponge: A Versatile, Efficient, and Ecofriendly Environmental Remediation Platform. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 10945-10954	3.9	8
146	Magnetic Control of Macroscale Nanoligand Density Regulates the Adhesion and Differentiation of Stem Cells. <i>Nano Letters</i> , 2020 , 20, 4188-4196	11.5	15
145	Frequency-Agile Low-Temperature Solution-Processed Alumina Dielectrics for Inorganic and Organic Electronics Enhanced by Fluoride Doping. <i>Journal of the American Chemical Society</i> , 2020 , 142, 12440-12452	16.4	14
144	Ultralow Thermal Conductivity and Thermoelectric Properties of Rb2Bi8Se13. <i>Chemistry of Materials</i> , 2020 , 32, 3561-3569	9.6	14
143	Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites. <i>Science</i> , 2020 , 368, 155-160	33.3	240
142	Remote Manipulation of Slidable Nano-Ligand Switch Regulates the Adhesion and Regenerative Polarization of Macrophages. <i>Advanced Functional Materials</i> , 2020 , 30, 2001446	15.6	20
141	Contrasting SnTe-NaSbTe and SnTe-NaBiTe Thermoelectric Alloys: High Performance Facilitated by Increased Cation Vacancies and Lattice Softening. <i>Journal of the American Chemical Society</i> , 2020 , 142, 12524-12535	16.4	21
140	Solid-Phase Synthesis of Megamolecules. <i>Journal of the American Chemical Society</i> , 2020 , 142, 4534-45	3& 6.4	3
139	Direct Visualization of Electric-Field-Induced Structural Dynamics in Monolayer Transition Metal Dichalcogenides. <i>ACS Nano</i> , 2020 , 14, 1569-1576	16.7	15
138	Single-Crystal Polycationic Polymers Obtained by Single-Crystal-to-Single-Crystal Photopolymerization. <i>Journal of the American Chemical Society</i> , 2020 , 142, 6180-6187	16.4	18
137	Thermoelectric transport enhancement of Te-rich bismuth antimony telluride (Bi0.5Sb1.5Te3+x) through controlled porosity. <i>Journal of Materiomics</i> , 2020 , 6, 532-544	6.7	19
136	Chain-End Functionalized Polymers for the Controlled Synthesis of Sub-2 nm Particles. <i>Journal of the American Chemical Society</i> , 2020 , 142, 7350-7355	16.4	11
135	Understanding the thermally activated charge transport in NaPbmSbQm+2 (Q = S, Se, Te) thermoelectrics: weak dielectric screening leads to grain boundary dominated charge carrier scattering. <i>Energy and Environmental Science</i> , 2020 , 13, 1509-1518	35.4	40
134	Topology of transition metal dichalcogenides: the case of the core-shell architecture. <i>Nanoscale</i> , 2020 , 12, 23897-23919	7.7	8
133	CeO quantum dots with massive oxygen vacancies as efficient catalysts for the synthesis of dimethyl carbonate. <i>Chemical Communications</i> , 2020 , 56, 403-406	5.8	14
132	Discordant nature of Cd in PbSe: off-centering and coreBhell nanoscale CdSe precipitates lead to high thermoelectric performance. <i>Energy and Environmental Science</i> , 2020 , 13, 200-211	35.4	36

(2019-2020)

131	[email[protected]2@WS2 CoreBhell Architectures: Combining Vapor Phase and Solution-Based Approaches. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 2627-2633	3.8	4
130	Homopolymer self-assembly of poly(propylene sulfone) hydrogels via dynamic noncovalent sulfone-sulfone bonding. <i>Nature Communications</i> , 2020 , 11, 4896	17.4	10
129	Oxidation Studies of High-Entropy Alloy Nanoparticles. ACS Nano, 2020, 14, 15131-15143	16.7	22
128	Oriented LiMnO Particle Fracture from Delithiation-Driven Surface Stress. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 49182-49191	9.5	7
127	Revealing nanoscale mineralization pathways of hydroxyapatite using in situ liquid cell transmission electron microscopy. <i>Science Advances</i> , 2020 , 6,	14.3	24
126	Enhancing nanostructured nickel-rich lithium-ion battery cathodes via surface stabilization. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2020 , 38, 063210	2.9	5
125	Magnetic Nanostructure-Loaded Bicontinuous Nanospheres Support Multicargo Intracellular Delivery and Oxidation-Responsive Morphological Transitions. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 55584-55595	9.5	6
124	Lithography-free IR polarization converters via orthogonal in-plane phonons in ⊞MoO flakes. <i>Nature Communications</i> , 2020 , 11, 5771	17.4	19
123	Ultrathin Silica-Coated Iron Oxide Nanoparticles: Size-Property Correlation. <i>ChemistrySelect</i> , 2020 , 5, 8929-8934	1.8	О
122	High Thermoelectric Performance in the New Cubic Semiconductor AgSnSbSe by High-Entropy Engineering. <i>Journal of the American Chemical Society</i> , 2020 , 142, 15187-15198	16.4	40
121	Large-area optoelectronic-grade InSe thin films via controlled phase evolution. <i>Applied Physics Reviews</i> , 2020 , 7, 041402	17.3	3
120	Halide perovskite nanocrystal arrays: Multiplexed synthesis and size-dependent emission. <i>Science Advances</i> , 2020 , 6,	14.3	25
119	Ultralow thermal conductivity in diamondoid lattices: high thermoelectric performance in chalcopyrite Cu0.8+yAg0.2In1IITe2. <i>Energy and Environmental Science</i> , 2020 , 13, 3693-3705	35.4	19
118	Large and Externally Positioned Ligand-Coated Nanopatches Facilitate the Adhesion-Dependent Regenerative Polarization of Host Macrophages. <i>Nano Letters</i> , 2020 , 20, 7272-7280	11.5	8
117	Independent Tuning of Nano-Ligand Frequency and Sequences Regulates the Adhesion and Differentiation of Stem Cells. <i>Advanced Materials</i> , 2020 , 32, e2004300	24	18
116	Exploring the Factors Affecting the Mechanical Properties of 2D Hybrid Organic-Inorganic Perovskites. <i>ACS Applied Materials & Acs Applied &</i>	9.5	22
115	Biomimetic Magnetic Nanostructures: A Theranostic Platform Targeting Lipid Metabolism and Immune Response in Lymphoma. <i>ACS Nano</i> , 2019 , 13, 10301-10311	16.7	10
114	Shape regulation of high-index facet nanoparticles by dealloying. <i>Science</i> , 2019 , 365, 1159-1163	33.3	62

113	Unconventional Defects in a Quasi-One-Dimensional KMnBi. Nano Letters, 2019, 19, 7476-7486	11.5	3
112	High Figure of Merit in Gallium-Doped Nanostructured n-Type PbTe-GeTe with Midgap States. Journal of the American Chemical Society, 2019 , 141, 16169-16177	16.4	44
111	Antiferromagnetic Semiconductor BaFMnTe with Unique Mn Ordering and Red Photoluminescence. <i>Journal of the American Chemical Society</i> , 2019 , 141, 17421-17430	16.4	5
110	MoS2-capped CuxS nanocrystals: a new heterostructured geometry of transition metal dichalcogenides for broadband optoelectronics. <i>Materials Horizons</i> , 2019 , 6, 587-594	14.4	13
109	Sodium storage in hard carbon with curved graphene platelets as the basic structural units. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 3327-3335	13	76
108	Origin of Intrinsically Low Thermal Conductivity in Talnakhite CuFeS Thermoelectric Material: Correlations between Lattice Dynamics and Thermal Transport. <i>Journal of the American Chemical Society</i> , 2019 , 141, 10905-10914	16.4	29
107	Particle analogs of electrons in colloidal crystals. <i>Science</i> , 2019 , 364, 1174-1178	33.3	62
106	Stimuli-Responsive DNA-Linked Nanoparticle Arrays as Programmable Surfaces. <i>Nano Letters</i> , 2019 , 19, 4535-4542	11.5	7
105	Magnetic Nanostructure-Coated Thermoresponsive Hydrogel Nanoconstruct As a Smart Multimodal Theranostic Platform. <i>ACS Biomaterials Science and Engineering</i> , 2019 , 5, 3049-3059	5.5	12
104	Ethylenediammonium-Based "Hollow" Pb/Sn Perovskites with Ideal Band Gap Yield Solar Cells with Higher Efficiency and Stability. <i>Journal of the American Chemical Society</i> , 2019 , 141, 8627-8637	16.4	67
103	Computational strategies for design and discovery of nanostructured thermoelectrics. <i>Npj Computational Materials</i> , 2019 , 5,	10.9	27
102	Spatial Mapping of Hot-Spots at Lateral Heterogeneities in Monolayer Transition Metal Dichalcogenides. <i>Advanced Materials</i> , 2019 , 31, e1808244	24	7
101	Quantifying Polymer Chain Orientation in Strong and Tough Nanofibers with Low Crystallinity: Toward Next Generation Nanostructured Superfibers. <i>ACS Nano</i> , 2019 , 13, 4893-4927	16.7	32
100	Interface and heterostructure design in polyelemental nanoparticles. <i>Science</i> , 2019 , 363, 959-964	33.3	116
99	Uniaxial Expansion of the 2D Ruddlesden-Popper Perovskite Family for Improved Environmental Stability. <i>Journal of the American Chemical Society</i> , 2019 , 141, 5518-5534	16.4	133
98	Probing Electrochemically Induced Structural Evolution and Oxygen Redox Reactions in Layered Lithium Iridate. <i>Chemistry of Materials</i> , 2019 , 31, 4341-4352	9.6	20
97	Design Strategy for High-Performance Thermoelectric Materials: The Prediction of Electron-Doped KZrCuSe3. <i>Chemistry of Materials</i> , 2019 , 31, 3018-3024	9.6	11
96	Enhancement of Thermoelectric Performance for n-Type PbS through Synergy of Gap State and Fermi Level Pinning. <i>Journal of the American Chemical Society</i> , 2019 , 141, 6403-6412	16.4	48

(2018-2019)

95	Structural analysis of the initial lithiation of NiO thin film electrodes. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 8897-8905	3.6	4
94	Enhanced Density-of-States Effective Mass and Strained Endotaxial Nanostructures in Sb-Doped PbCdTe Thermoelectric Alloys. <i>ACS Applied Materials & Description of the Physiology (Naterials & Descri</i>	9.5	46
93	A Bismuth Metal-Organic Framework as a Contrast Agent for X-ray Computed Tomography <i>ACS Applied Bio Materials</i> , 2019 , 2, 1197-1203	4.1	40
92	Nonlinear Band Gap Tunability in Selenium I ellurium Alloys and Its Utilization in Solar Cells. <i>ACS Energy Letters</i> , 2019 , 4, 2137-2143	20.1	15
91	Simultaneous Bottom-Up Interfacial and Bulk Defect Passivation in Highly Efficient Planar Perovskite Solar Cells using Nonconjugated Small-Molecule Electrolytes. <i>Advanced Materials</i> , 2019 , 31, e1903239	24	59
90	Self-Passivation of 2D Ruddlesden-Popper Perovskite by Polytypic Surface PbI Encapsulation. <i>Nano Letters</i> , 2019 , 19, 6109-6117	11.5	24
89	Ultralow Thermal Conductivity and High-Temperature Thermoelectric Performance in n-Type K2.5Bi8.5Se14. <i>Chemistry of Materials</i> , 2019 , 31, 5943-5952	9.6	15
88	High Thermoelectric Performance in PbSeNaSbSe2 Alloys from Valence Band Convergence and Low Thermal Conductivity. <i>Advanced Energy Materials</i> , 2019 , 9, 1901377	21.8	42
87	Probing Strain-Induced Band Gap Modulation in 2D Hybrid OrganicIhorganic Perovskites. <i>ACS Energy Letters</i> , 2019 , 4, 796-802	20.1	34
86	Mapping Hot Spots at Heterogeneities of Few-Layer TiC MXene Sheets. ACS Nano, 2019 , 13, 3301-3309	16.7	16
85	All-Scale Hierarchically Structured p-Type PbSe Alloys with High Thermoelectric Performance Enabled by Improved Band Degeneracy. <i>Journal of the American Chemical Society</i> , 2019 , 141, 4480-4486	16.4	62
84	(CuZn)InGeO (0 III): A Complex, Ordered, Anion-Deficient Fluorite with Unusual Site-Specific Cation Mixing. <i>Inorganic Chemistry</i> , 2019 , 58, 15610-15617	5.1	2
83	Colloidal Crystal "Alloys". Journal of the American Chemical Society, 2019, 141, 20443-20450	16.4	11
82	Phase engineering and optical properties of 2D MoSe2: Promise and pitfalls. <i>Materials Chemistry and Physics</i> , 2019 , 225, 219-226	4.4	6
81	Polymer Analog Memristive Synapse with Atomic-Scale Conductive Filament for Flexible Neuromorphic Computing System. <i>Nano Letters</i> , 2019 , 19, 839-849	11.5	84
80	Strain-Induced Metastable Phase Stabilization in GaO Thin Films. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 5536-5543	9.5	25
79	Cu-Substituted NiF as a Cathode Material for Li-Ion Batteries. ACS Applied Materials & Eamp; Interfaces, 2019, 11, 647-654	9.5	24
78	Unique [MnBi] Nanowires in KMnBi: A Quasi-One-Dimensional Antiferromagnetic Metal. <i>Journal of the American Chemical Society</i> , 2018 , 140, 4391-4400	16.4	14

77	Intrinsic Transport in 2D Heterostructures Mediated through h-BN Tunneling Contacts. <i>Nano Letters</i> , 2018 , 18, 2990-2998	11.5	30
76	Remote Control of Heterodimeric Magnetic Nanoswitch Regulates the Adhesion and Differentiation of Stem Cells. <i>Journal of the American Chemical Society</i> , 2018 , 140, 5909-5913	16.4	50
75	Optically Active 1D MoS Nanobelts. ACS Applied Materials & amp; Interfaces, 2018, 10, 6799-6804	9.5	19
74	Micromachined Chip Scale Thermal Sensor for Thermal Imaging. ACS Nano, 2018, 12, 1760-1767	16.7	11
73	High Thermoelectric Performance in SnTeAgSbTe2 Alloys from Lattice Softening, Giant PhononVacancy Scattering, and Valence Band Convergence. <i>ACS Energy Letters</i> , 2018 , 3, 705-712	20.1	90
72	Nitric Oxide-Delivering High-Density Lipoprotein-like Nanoparticles as a Biomimetic Nanotherapy for Vascular Diseases. <i>ACS Applied Materials & English (Materials & English (Materials & English)</i> 10, 6904-6916	9.5	28
71	Magnetic lipid nanocapsules (MLNCs): self-assembled lipid-based nanoconstruct for non-invasive theranostic applications. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 1026-1034	7:3	11
70	Building superlattices from individual nanoparticles via template-confined DNA-mediated assembly. <i>Science</i> , 2018 , 359, 669-672	33.3	145
69	Large-Scale Fabrication of MoS2 Ribbons and Their Light-Induced Electronic/Thermal Properties: Dichotomies in the Structural and Defect Engineering. <i>Advanced Functional Materials</i> , 2018 , 28, 1704863	315.6	21
68	Pulsed Laser Deposition and Characterization of Heteroepitaxial LiMn2O4/La0.5Sr0.5CoO3 Bilayer Thin Films as Model Lithium Ion Battery Cathodes. <i>ACS Applied Nano Materials</i> , 2018 , 1, 642-653	5.6	14
67	One-Pot Green Synthesis of Fe3O4/MoS2 0D/2D Nanocomposites and Their Application in Noninvasive Point-of-Care Glucose Diagnostics. <i>ACS Applied Nano Materials</i> , 2018 , 1, 1949-1958	5.6	27
66	DNA-Mediated Size-Selective Nanoparticle Assembly for Multiplexed Surface Encoding. <i>Nano Letters</i> , 2018 , 18, 2645-2649	11.5	27
65	Multistates and Polyamorphism in Phase-Change KSbSe. <i>Journal of the American Chemical Society</i> , 2018 , 140, 9261-9268	16.4	6
64	Exchange Coupling in Soft Magnetic Nanostructures and Its Direct Effect on Their Theranostic Properties. <i>ACS Applied Materials & Acs Applied & Acs Appl</i>	9.5	19
63	Revealing the Effects of Electrode Crystallographic Orientation on Battery Electrochemistry via the Anisotropic Lithiation and Sodiation of ReS. <i>ACS Nano</i> , 2018 , 12, 7875-7882	16.7	21
62	In Situ Observation of Resistive Switching in an Asymmetric Graphene Oxide Bilayer Structure. <i>ACS Nano</i> , 2018 , 12, 7335-7342	16.7	25
61	Soft phonon modes from off-center Ge atoms lead to ultralow thermal conductivity and superior thermoelectric performance in n-type PbSetieSe. <i>Energy and Environmental Science</i> , 2018 , 11, 3220-3230	35.4	75
60	Site-Specific Positioning and Patterning of MoS Monolayers: The Role of Au Seeding. <i>ACS Nano</i> , 2018 , 12, 8970-8976	16.7	33

59	Out-of-Plane Mechanical Properties of 2D Hybrid Organic-Inorganic Perovskites by Nanoindentation. <i>ACS Applied Materials & Samp; Interfaces</i> , 2018 , 10, 22167-22173	9.5	44
58	Nanoparticle@MoS2 CoreBhell Architecture: Role of the Core Material. <i>Chemistry of Materials</i> , 2018 , 30, 4675-4682	9.6	21
57	Thin Film RuO2 Lithiation: Fast Lithium-Ion Diffusion along the Interface. <i>Advanced Functional Materials</i> , 2018 , 28, 1805723	15.6	7
56	Chemical Insights into PbSe- x%HgSe: High Power Factor and Improved Thermoelectric Performance by Alloying with Discordant Atoms. <i>Journal of the American Chemical Society</i> , 2018 , 140, 18115-18123	16.4	60
55	Understanding the Effect of Interlayers at the Thiophosphate Solid Electrolyte/Lithium Interface for All-Solid-State Li Batteries. <i>Chemistry of Materials</i> , 2018 , 30, 8747-8756	9.6	53
54	Morphological Engineering of Winged Au@MoS Heterostructures for Electrocatalytic Hydrogen Evolution. <i>Nano Letters</i> , 2018 , 18, 7104-7110	11.5	71
53	Dual Alloying Strategy to Achieve a High Thermoelectric Figure of Merit and Lattice Hardening in p-Type Nanostructured PbTe. <i>ACS Energy Letters</i> , 2018 , 3, 2593-2601	20.1	30
52	Stretching and Breaking of Ultrathin 2D Hybrid Organic-Inorganic Perovskites. ACS Nano, 2018 , 12, 1034	17 <i>6</i> 1 9 3	5 <u>4</u> 1
51	Design Rules for Template-Confined DNA-Mediated Nanoparticle Assembly. <i>Small</i> , 2018 , 14, e1802742	11	9
50	Abrupt Thermal Shock of (NH)MoS Leads to Ultrafast Synthesis of Porous Ensembles of MoS Nanocrystals for High Gain Photodetectors. <i>ACS Applied Materials & District Research</i> , 2018, 10, 38193-382	200	1
49	An In Situ Reversible Heterodimeric Nanoswitch Controlled by Metal-Ion-Ligand Coordination Regulates the Mechanosensing and Differentiation of Stem Cells. <i>Advanced Materials</i> , 2018 , 30, e18035	94	32
48	Conversion of Single Crystal (NH4)2Mo3S13IH2O to Isomorphic Pseudocrystals of MoS2Nanoparticles. <i>Chemistry of Materials</i> , 2018 , 30, 3847-3853	9.6	6
47	Absence of Nanostructuring in NaPb SbTe: Solid Solutions with High Thermoelectric Performance in the Intermediate Temperature Regime. <i>Journal of the American Chemical Society</i> , 2018 , 140, 7021-703	3 ^{16.4}	19
46	Controlled synthesis of 2D MX2 (M = Mo, W; X = S, Se) heterostructures and alloys. <i>Journal of Applied Physics</i> , 2018 , 123, 204304	2.5	12
45	Windowless Observation of Evaporation-Induced Coarsening of Au-Pt Nanoparticles in Polymer Nanoreactors. <i>Journal of the American Chemical Society</i> , 2018 , 140, 7213-7221	16.4	8
44	Thermal conductivity in BiSbTe and the role of dense dislocation arrays at grain boundaries. <i>Science Advances</i> , 2018 , 4, eaar5606	14.3	102
43	Magnetic Manipulation of Reversible Nanocaging Controls In Vivo Adhesion and Polarization of Macrophages. <i>ACS Nano</i> , 2018 , 12, 5978-5994	16.7	47
42	Origin of Fracture-Resistance to Large Volume Change in Cu-Substituted Co O Electrodes. Advanced Materials, 2018, 30, 1704851	24	23

41	Systematic Study of Oxygen Vacancy Tunable Transport Properties of Few-Layer MoO3⊠ Enabled by Vapor-Based Synthesis. <i>Advanced Functional Materials</i> , 2017 , 27, 1605380	15.6	66
40	Quantifying Plasmon-Enhanced Light Absorption in Monolayer WS Films. <i>ACS Applied Materials</i> & amp; Interfaces, 2017 , 9, 15044-15051	9.5	33
39	The Structural Fate of Individual Multicomponent Metal-Oxide Nanoparticles in Polymer Nanoreactors. <i>Angewandte Chemie</i> , 2017 , 129, 7733-7737	3.6	3
38	The Structural Fate of Individual Multicomponent Metal-Oxide Nanoparticles in Polymer Nanoreactors. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 7625-7629	16.4	14
37	Solution-Phase Photochemical Nanopatterning Enabled by High-Refractive-Index Beam Pen Arrays. <i>ACS Nano</i> , 2017 , 11, 8231-8241	16.7	11
36	Thickness Resonance Acoustic Microscopy for Nanomechanical Subsurface Imaging. <i>ACS Nano</i> , 2017 , 11, 6139-6145	16.7	9
35	Intermediate phases in sodium intercalation into MoS2 nanosheets and their implications for sodium-ion batteries. <i>Nano Energy</i> , 2017 , 38, 342-349	17.1	119
34	High Throughput Synthesis of Multifunctional Oxide Nanostructures within Nanoreactors Defined by Beam Pen Lithography. <i>ACS Nano</i> , 2017 , 11, 4439-4444	16.7	14
33	Remote Control of Multimodal Nanoscale Ligand Oscillations Regulates Stem Cell Adhesion and Differentiation. <i>ACS Nano</i> , 2017 , 11, 9636-9649	16.7	47
32	Superior Plasmonic Photodetectors Based on Au@MoS Core-Shell Heterostructures. <i>ACS Nano</i> , 2017 , 11, 10321-10329	16.7	96
31	Remote Manipulation of Ligand Nano-Oscillations Regulates Adhesion and Polarization of Macrophages in Vivo. <i>Nano Letters</i> , 2017 , 17, 6415-6427	11.5	52
30	Engineered ferritin nanocages as natural contrast agents in magnetic resonance imaging. <i>RSC Advances</i> , 2017 , 7, 34892-34900	3.7	11
29	Multistage Transformation and Lattice Fluctuation at AgCl-Ag Interface. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 5853-5860	6.4	3
28	Lithiation of multilayer Ni/NiO electrodes: criticality of nickel layer thicknesses on conversion reaction kinetics. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 20029-20039	3.6	12
27	Structural Evolution of Three-Component Nanoparticles in Polymer Nanoreactors. <i>Journal of the American Chemical Society</i> , 2017 , 139, 9876-9884	16.4	30
26	Emerging opportunities in the two-dimensional chalcogenide systems and architecture. <i>Current Opinion in Solid State and Materials Science</i> , 2016 , 20, 374-387	12	23
25	Two-dimensional bismuth-rich nanosheets through the evaporative thinning of Se-doped Bi2Te3. Journal of Crystal Growth, 2016 , 436, 138-144	1.6	3
24	Magneto-thermally responsive hydrogels for bladder cancer treatment: Therapeutic efficacy and in vivo biodistribution. <i>Colloids and Surfaces B: Biointerfaces</i> , 2015 , 136, 625-33	6	14

23	High performance bulk thermoelectrics via a panoscopic approach. <i>Materials Today</i> , 2013 , 16, 166-176	21.8	344
22	Enhanced field-emission behavior of layered MoSIsheets. <i>Small</i> , 2013 , 9, 2730-4	11	173
21	Rapid Characterization of Ultrathin Layers of Chalcogenides on SiO2/Si Substrates. <i>Advanced Functional Materials</i> , 2012 , 22, 1894-1905	15.6	389
20	Phonon Scattering and Thermal Conductivity in p-Type Nanostructured PbTe-BaTe Bulk Thermoelectric Materials. <i>Advanced Functional Materials</i> , 2012 , 22, 5175-5184	15.6	95
19	GaS and GaSe ultrathin layer transistors. Advanced Materials, 2012, 24, 3549-54	24	492
18	Synthesis and Characterization of Nanocrystalline Zinc Manganese Ferrite. <i>Journal of the American Ceramic Society</i> , 2011 , 94, 1490-1495	3.8	9
17	Hybrid magnetic nanostructures (MNS) for magnetic resonance imaging applications. <i>Advanced Drug Delivery Reviews</i> , 2011 , 63, 1282-99	18.5	60
16	Reinforced self-assembled nanodielectrics for high-performance transparent thin film transistors. <i>Advanced Materials</i> , 2011 , 23, 992-7	24	17
15	Microstructure-Lattice Thermal Conductivity Correlation in Nanostructured PbTe0.7S0.3 Thermoelectric Materials. <i>Advanced Functional Materials</i> , 2010 , 20, 764-772	15.6	268
14	Controlled fabrication of oriented co-doped ZnO clustered nanoassemblies. <i>Journal of Colloid and Interface Science</i> , 2010 , 349, 19-26	9.3	18
13	Nanoscale assembly of amine functionalized colloidal iron oxide. <i>Journal of Magnetism and Magnetic Materials</i> , 2009 , 321, 1529-1532	2.8	72
12	Defects in three-dimensional spherical assemblies of Ni-doped ZnO nanocrystals. <i>Journal of Materials Research</i> , 2009 , 24, 3543-3550	2.5	10
11	Fabrication and Structural Evaluation of Beaded Inorganic Nanostructures Using Soft-Electron-Beam Lithography. <i>Advanced Materials</i> , 2007 , 19, 125-128	24	18
10	Controlled Synthesis and Stability of Co@SiO2 Aqueous Colloids. <i>Journal of the American Ceramic Society</i> , 2007 , 90, 950-956	3.8	26
9	Characterization of NixCo1⊠O/ZrO2(CaO) directionally solidified eutectic (DSE) ceramic composites with a ductile interphase. <i>Journal of Materials Research</i> , 2007 , 22, 1797-1805	2.5	3
8	Directed fabrication of radially stacked multifunctional oxide heterostructures using soft electron-beam lithography. <i>Small</i> , 2006 , 2, 274-80	11	30
7	Interfacial Fracture Phenomena in Ceramic Composite Directionally Solidified Eutectics with a Ductile Interphase. <i>Journal of the American Ceramic Society</i> , 2006 , 89, 767-772	3.8	3
6	On the performance evaluation of hybrid and mono-class sensor arrays in selective detection of VOCs: A comparative study. <i>Sensors and Actuators B: Chemical</i> , 2006 , 117, 244-252	8.5	20

5	Silica encapsulation and magnetic properties of FePt nanoparticles. <i>Journal of Colloid and Interface Science</i> , 2005 , 290, 444-9	9.3	81
4	A convenient and rapid sample repositioning approach for atomic force microscopy. <i>Journal of Microscopy</i> , 2004 , 216, 194-6	1.9	8
3	Arrays of Magnetic Nanoparticles Patterned via Dip-PenlNanolithography. <i>Advanced Materials</i> , 2002 , 14, 231-234	24	165
2	Galvanic Transformation Dynamics in Heterostructured Nanoparticles. <i>Advanced Functional Materials</i> ,2105866	15.6	O
1	Elucidating and Mitigating High-Voltage Interfacial Chemomechanical Degradation of Nickel-Rich Lithium-Ion Battery Cathodes via Conformal Graphene Coating. ACS Applied Energy Materials,	6.1	2