Bettina P Mihalas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5270650/publications.pdf

Version: 2024-02-01

758635 940134 17 782 12 16 citations h-index g-index papers 17 17 17 999 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Characterisation of mouse epididymosomes reveals a complex profile of microRNAs and a potential mechanism for modification of the sperm epigenome. Scientific Reports, 2016, 6, 31794.	1.6	181
2	The MicroRNA Signature of Mouse Spermatozoa Is Substantially Modified During Epididymal Maturation 1. Biology of Reproduction, 2015, 93, 91.	1.2	156
3	The lipid peroxidation product 4-hydroxynonenal contributes to oxidative stress-mediated deterioration of the ageing oocyte. Scientific Reports, 2017, 7, 6247.	1.6	87
4	Autophagy in Female Fertility: A Role in Oxidative Stress and Aging. Antioxidants and Redox Signaling, 2020, 32, 550-568.	2.5	67
5	Molecular Mechanisms Responsible for Increased Vulnerability of the Ageing Oocyte to Oxidative Damage. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-22.	1.9	56
6	Next Generation Sequencing Analysis Reveals Segmental Patterns of microRNA Expression in Mouse Epididymal Epithelial Cells. PLoS ONE, 2015, 10, e0135605.	1.1	42
7	Oxidative damage in naturally aged mouse oocytes is exacerbated by dysregulation of proteasomal activity. Journal of Biological Chemistry, 2018, 293, 18944-18964.	1.6	33
8	Changing expression and subcellular distribution of karyopherins during murine oogenesis. Reproduction, 2015, 150, 485-496.	1.1	27
9	Inhibition of arachidonate 15-lipoxygenase prevents 4-hydroxynonenal-induced protein damage in male germ cellsâ€. Biology of Reproduction, 2017, 96, 598-609.	1.2	27
10	Hematogenous dissemination of Chlamydia muridarum from the urethra in macrophages causes testicular infection and sperm DNA damageâ€. Biology of Reproduction, 2019, 101, 748-759.	1.2	25
11	Assessment of microRNA expression in mouse epididymal epithelial cells and spermatozoa by next generation sequencing. Genomics Data, 2015, 6, 208-211.	1.3	21
12	Janus kinase JAK1 maintains the ovarian reserve of primordial follicles in the mouse ovary. Molecular Human Reproduction, 2018, 24, 533-542.	1.3	19
13	Chronic testicular Chlamydia muridarum infection impairs mouse fertility and offspring developmentâ€. Biology of Reproduction, 2020, 102, 888-901.	1.2	16
14	Dynamin 2 is essential for mammalian spermatogenesis. Scientific Reports, 2016, 6, 35084.	1.6	10
15	The small non-coding RNA profile of mouse oocytes is modified during aging. Aging, 2019, 11, 2968-2997.	1.4	10
16	Dynamin 2â€dependent endocytosis is essential for mouse oocyte development and fertility. FASEB Journal, 2020, 34, 5162-5177.	0.2	5
17	The Primordial Journey. Molecular Reproduction and Development, 2018, 85, 809-809.	1.0	0