Xing-Wang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5269677/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chiral oxamide–phosphine–palladium catalyzed highly asymmetric allylic amination: carbonyl assistance for high regio- and enantiocontrols. Organic Chemistry Frontiers, 2022, 9, 3976-3989.	4.5	7
2	Box-copper catalyzed asymmetric inverse-electron-demand oxa-hetero-Diels–Alder reaction for efficient synthesis of spiro pyranyl-oxindole derivatives. Organic Chemistry Frontiers, 2021, 8, 2009-2018.	4.5	8
3	Chiral Bidentate Phosphoramidite-Pd Catalyzed Asymmetric Decarboxylative Dipolar Cycloaddition for Multistereogenic Tetrahydrofurans with Cyclic <i>N</i> -Sulfonyl Ketimine Moieties. Organic Letters, 2021, 23, 4715-4720.	4.6	19
4	Box-copper catalyzed cascade asymmetric amidation for chiral <i>exo</i> -methylene aminoindoline derivatives. Organic and Biomolecular Chemistry, 2021, 19, 9373-9378.	2.8	5
5	Organo-catalyzed asymmetric cascade annulation reaction for the construction of bi-spirocyclic pyrazolone and oxindole derivatives. Organic Chemistry Frontiers, 2020, 7, 796-809.	4.5	21
6	Modular Chiral Bisoxalamide–Copper-Catalyzed Asymmetric Oxo-Diels–Alder Reaction: Carbonyl Coordination for High Enantio- and Diastereocontrols. ACS Catalysis, 2020, 10, 3556-3563.	11.2	25
7	Chiral Binaphthyl Box-Copper-Catalyzed Enantioselective Tandem Michael–Ketalization Annulations for Optically Active Aryl and Heteroaryl Fused Bicyclicnonanes. Organic Letters, 2020, 22, 3936-3941.	4.6	8
8	Synthesis of Chiral Bifunctional NHC Ligands and Survey of Their Utilities in Asymmetric Gold Catalysis. Organometallics, 2019, 38, 3931-3938.	2.3	33
9	Chiral N-Heterocyclic-Carbene-Catalyzed Cascade Asymmetric Desymmetrization of Cyclopentenediones with Enals: Access to Optically Active 1,3-Indandione Derivatives. Organic Letters, 2019, 21, 8582-8586.	4.6	23
10	Asymmetric [4+2] cycloaddition of azlactones with dipolar copper–allenylidene intermediates for chiral 3,4-dhydroquinolin-2-one derivatives. Tetrahedron Letters, 2019, 60, 1967-1970.	1.4	17
11	Stereoselective synthesis of spirocyclohexadiene-pyrazolones <i>via</i> organic base and/or hydrogen bonding assisted [3 + 3] annulation reactions. Organic Chemistry Frontiers, 2019, 6, 1842-1857.	4.5	17
12	Pd-Catalyzed Asymmetric Dearomative Cycloaddition for Construction of Optically Active Pyrroloindoline and Cyclopentaindoline Derivatives: Access to 3a-Aminopyrroloindolines. Journal of Organic Chemistry, 2018, 83, 2882-2891.	3.2	82
13	Diastereodivergent synthesis of bispirooxindoles via asymmetric Friedel–Crafts/aldol cascade reaction: co-catalyst effects on diastereoselective outcomes. Chemical Communications, 2018, 54, 2260-2263.	4.1	21
14	Chiral Diphosphine–Palladium-Catalyzed Sequential Asymmetric Double-Friedel–Crafts Alkylation and <i>N</i> -Hemiketalization for Spiro-polycyclic Indole Derivatives. Organic Letters, 2017, 19, 1954-1957.	4.6	37
15	Cinchona Alkaloid Derived Primary Amine Catalyzed Intramolecular Desymmetrizing Aldolization Reaction of Diacetonyloxindoles. European Journal of Organic Chemistry, 2017, 2017, 2871-2877.	2.4	5
16	Chiral Nâ€Heterocyclic Carbeneâ€Catalyzed Asymmetric Michael–Intramolecular Aldolâ€Lactonization Cascade for Enantioselective Construction of βâ€Propiolactoneâ€Fused Spiro[cyclopentaneâ€oxindoles]. Advanced Synthesis and Catalysis, 2017, 359, 1541-1551.	4.3	42
17	Organo-Catalyzed Asymmetric Michael–Hemiketalization–Oxa-Pictet–Spengler Cyclization for Bridged and Spiro Heterocyclic Skeletons: Oxocarbenium Ion as a Key Intermediate. Organic Letters, 2017, 19, 6626-6629.	4.6	34
18	Asymmetric Synthesis of Dihydrocoumarins Containing Contiguous Quaternary and Tertiary Stereogenic Centers Catalyzed by a <i>Cinchona</i> â€Alkaloidâ€Based Bifunctional Thiourea Derivative. Advanced Synthesis and Catalysis, 2016, 358, 143-153.	4.3	32

XING-WANG WANG

#	Article	IF	CITATIONS
19	BrĄ̃nsted or Lewis Acid Initiated Multicomponent Cascade Reaction: Diastereoselective Synthesis of Imidazolidinyl Spirooxindole Derivatives. ChemCatChem, 2016, 8, 2797-2807.	3.7	14
20	Organocatalytic tandem enantioselective Michael-cyclization of isatin-derived β,γ-unsaturated α-ketoesters with 3-hydroxy-4H-chromen-4-one or 2-hydroxy-1,4-naphthoquinone derivatives. RSC Advances, 2016, 6, 84248-84254.	3.6	20
21	Friedel–Crafts Reaction of Indoles with Isatinâ€Derived β,γâ€Unsaturated αâ€Keto Esters Using a BINOLâ€Der Bisoxazoline (BOX)/Copper(II) Complex as Catalyst. Advanced Synthesis and Catalysis, 2016, 358, 3100-3112.	ived 4.3	22
22	Dinuclear zinc-catalyzed desymmetric intramolecular aldolization: an enantioselective construction of spiro[cyclohexanone-oxindole] derivatives. RSC Advances, 2016, 6, 30683-30689.	3.6	18
23	Organocatalytic regioselective asymmetric Michael addition of azlactones to o-hydroxy chalcone derivatives. Organic and Biomolecular Chemistry, 2015, 13, 5698-5709.	2.8	21
24	Theoretical studies on the activation mechanism involving bifunctional tertiary amine–thioureas and isatylidene malononitriles. RSC Advances, 2015, 5, 34314-34318.	3.6	6
25	Enantioselective Construction of Functionalized Thiopyrano-Indole Annulated Heterocycles via a Formal Thio [3 + 3]-Cyclization. Organic Letters, 2015, 17, 42-45.	4.6	42
26	Organocatalytic enantioselective construction of multi-functionalized spiro oxindole dienes. Organic and Biomolecular Chemistry, 2014, 12, 4372.	2.8	49
27	Construction of highly substituted pyrazole derivatives with P–C bond: access to racemic and enantioselective forms by conjugate addition of diarylphosphane oxides to α,β-unsaturated pyrazolones. Tetrahedron, 2014, 70, 417-426.	1.9	20
28	Regio―and Enantioselective Organocascade Michael–Michael Reactions: Construction of Chiral Trisubstituted Indanes. European Journal of Organic Chemistry, 2014, 2014, 2677-2681.	2.4	11
29	Enantioselective Synthesis of Optically Active Bis(<i>î²</i> â€hydroxy) Sulfones through Asymmetric Hydrogenation of Corresponding Ketones Catalyzed by a Chiral Cationic Ruthenium Diamine Catalyst. Chinese Journal of Chemistry, 2014, 32, 803-813.	4.9	5
30	Organocatalytic Diversity-Oriented Asymmetric Synthesis of Tricyclic Chroman Derivatives. Journal of Organic Chemistry, 2014, 79, 10772-10785.	3.2	51
31	Highly enantioselective phosphination and hydrophosphonylation of azomethine imines: using chiral squaramide as a hydrogen bonding organocatalyst. Organic and Biomolecular Chemistry, 2014, 12, 8656-8670.	2.8	16
32	Enantioselective Strecker-type reaction between azomethine imines and trimethylsilyl cyanide catalyzed by a cinchona alkaloid-derived thiourea bearing multiple hydrogen-bonding donors. RSC Advances, 2013, 3, 9154.	3.6	12
33	Asymmetric Hydrogenation of βâ€Keto Sulfonamides and βâ€Keto Sulfones with a Chiral Cationic Ruthenium Diamine Catalyst. Advanced Synthesis and Catalysis, 2013, 355, 2860-2872.	4.3	28
34	Organocatalytic Asymmetric Michael Addition of Aliphatic Aldehydes to Indolylnitroalkenes: Access to Contiguous Stereogenic Tryptamine Precursors. Journal of Organic Chemistry, 2013, 78, 2362-2372.	3.2	31
35	Enantioselective Synthesis of Unsymmetrical Diarylâ€Substituted Spirocyclohexanonepyrazolones through a Cascade [4+2] Double Michael Addition. Advanced Synthesis and Catalysis, 2013, 355, 797-808.	4.3	69
36	Asymmetric Michael/Aromatization Reaction of Azlactones to α,βâ€Unsaturated Pyrazolones with Câ€4 Regioselectivity Catalyzed by an Isosteviolâ€Đerived Thiourea Organocatalyst. European Journal of Organic Chemistry, 2013, 2013, 4738-4743.	2.4	22

XING-WANG WANG

#	Article	IF	CITATIONS
37	Enantioselective synthesis of optically active cis·l²-thio-l̂±-amino acid derivatives through an organocatalytic cascade thio-Michael/ring opening process. Chemical Communications, 2012, 48, 4713.	4.1	24
38	Stereoselective Synthesis of Optically Active Hydrobenzoins via Asymmetric Hydrogenation of Benzils with Ru(OTf)(TsDPEN)(η ⁶ â€cymene) as the Preâ€catalyst. Chinese Journal of Chemistry, 2012, 30, 2657-2663.	4.9	6
39	Enantioselective construction of multifunctionalized spirocyclohexaneoxindoles through organocatalytic Michael–Aldol cyclization of isatin derived alkenes with linear dialdehydes. Organic and Biomolecular Chemistry, 2012, 10, 8794.	2.8	42
40	Enantioselective Construction of Spiro[2 <i>H</i> â€pyranâ€3,4′â€indoline] by a Systematic Michael/Reduction/Cyclization Sequence Triggered by the Asymmetric Conjugate Addition of Ketones to Isatylidenemalononitriles. European Journal of Organic Chemistry, 2012, 2012, 1935-1944.	2.4	39
41	Chiral Phosphoric Acidâ€Catalyzed Asymmetric Oxidation of Aryl Alkyl Sulfides and Aldehydeâ€Derived 1,3â€Dithianes: Using Aqueous Hydrogen Peroxide as the Terminal Oxidant. Advanced Synthesis and Catalysis, 2012, 354, 1012-1022.	4.3	50
42	Highly Enantioselective Synthesis of Spiro[cyclohexanoneâ€oxindoles] and Spiro[cyclohexanoneâ€pyrazolones] by Asymmetric Cascade [5+1] Double Michael Reactions. European Journal of Organic Chemistry, 2012, 2012, 1318-1327.	2.4	95
43	Efficient synthesis of optically active 4-nitro-cyclohexanones via bifunctional thiourea-base catalyzed double-Michael addition of nitromethane to dienones. Chemical Communications, 2011, 47, 3992.	4.1	48
44	Chiral Counteranion Synergistic Organocatalysis under High Temperature: Efficient Construction of Optically Pure Spiro[cyclohexanone-oxindole] Backbone. Organic Letters, 2011, 13, 4866-4869.	4.6	148
45	Dinuclear zinc catalyzed asymmetric Friedel–Crafts amidoalkylation of indoles with aryl aldimines. Organic and Biomolecular Chemistry, 2011, 9, 2614.	2.8	52
46	Asymmetric Nitroaldol Reactions of Nitroalkanes with Isatins Catalyzed by Bifunctional Cinchona Alkaloid Derivatives. European Journal of Organic Chemistry, 2011, 2011, 5237-5241.	2.4	21
47	Asymmetric Counteranionâ€Directed Catalysis for the Epoxidation of Enals. Angewandte Chemie - International Edition, 2008, 47, 1119-1122.	13.8	221
48	Catalytic Asymmetric Epoxidation of Cyclic Enones. Journal of the American Chemical Society, 2008, 130, 6070-6071.	13.7	304
49	Heterogenization of Shibasaki's Binol/La Catalyst for Enantioselective Epoxidation of α,β-Unsaturated Ketones with Multitopic Binol Ligands: The Impact of Bridging Spacers. Angewandte Chemie - International Edition, 2005, 44, 6362-6366.	13.8	82
50	Self-Supported Heterogeneous Titanium Catalysts for Enantioselective Carbonyl-Ene and Sulfoxidation Reactions. Chemistry - A European Journal, 2005, 11, 4078-4088.	3.3	95
51	Self-Supported Heterogeneous Catalysts for Enantioselective Hydrogenation. Journal of the American Chemical Society, 2004, 126, 10524-10525.	13.7	102
52	Pendantâ€armed Unsymmetrical Azaâ€macrocycles: Syntheses, Coordination Behavior and Crystal Structure of a Dinuclear Cadmium Complex. Chinese Journal of Chemistry, 2002, 20, 865-871.	4.9	6