Regine Willumeit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5269593/publications.pdf Version: 2024-02-01

		30047	36008
265	11,635	54	97
papers	citations	h-index	g-index
271 all docs	271 docs citations	271 times ranked	8503 citing authors

#	Article	IF	CITATIONS
1	Degradable biomaterials based on magnesium corrosion. Current Opinion in Solid State and Materials Science, 2008, 12, 63-72.	5.6	1,537
2	Magnesium alloys as implant materials – Principles of property design for Mg–RE alloysâ~†. Acta Biomaterialia, 2010, 6, 1714-1725.	4.1	503
3	Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell linesâ~†. Acta Biomaterialia, 2010, 6, 1834-1842.	4.1	496
4	Mg and Mg alloys: How comparable are in vitro and in vivo corrosion rates? A review. Acta Biomaterialia, 2015, 13, 16-31.	4.1	378
5	Measurement of the spin-dependent structure function g1(x) of the proton. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1994, 329, 399-406.	1.5	311
6	Spin asymmetriesA1and structure functionsg1of the proton and the deuteron from polarized high energy muon scattering. Physical Review D, 1998, 58, .	1.6	266
7	Spin structure of the proton from polarized inclusive deep-inelastic muon-proton scattering. Physical Review D, 1997, 56, 5330-5358.	1.6	233
8	Magnesium degradation under physiological conditions – Best practice. Bioactive Materials, 2018, 3, 174-185.	8.6	177
9	Chemical surface alteration of biodegradable magnesium exposed to corrosion media. Acta Biomaterialia, 2011, 7, 2704-2715.	4.1	174
10	Effects of extracellular magnesium extract on the proliferation and differentiation of human osteoclasts in coculture. Acta Biomaterialia, 2015, 27, 294-304.	4.1	158
11	Interference of magnesium corrosion with tetrazolium-based cytotoxicity assaysâ~†. Acta Biomaterialia, 2010, 6, 1813-1823.	4.1	150
12	A new measurement of the spin-dependent structure function g1(x) of the deuteron. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1995, 357, 248-254.	1.5	149
13	Polarised quark distributions in the nucleon from semi-inclusive spin asymmetries. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1998, 420, 180-190.	1.5	148
14	In vitro and in vivo comparison of binary Mg alloys and pure Mg. Materials Science and Engineering C, 2016, 61, 865-874.	3.8	122
15	Microstructure and mechanical behavior of metal injection molded Ti–Nb binary alloys as biomedical material. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 28, 171-182.	1.5	118
16	Next-to-leading order QCD analysis of the spin structure functiong1. Physical Review D, 1998, 58, .	1.6	117
17	Improved cytotoxicity testing of magnesium materials. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 830-834.	1.7	108
18	The role of individual components of simulated body fluid on the corrosion behavior of commercially pure Mg. Corrosion Science, 2019, 147, 81-93.	3.0	97

#	Article	IF	CITATIONS
19	Spin asymmetries for events with highpThadrons in DIS and an evaluation of the gluon polarization. Physical Review D, 2004, 70, .	1.6	96
20	Small-Angle Neutron and X-ray Scattering from Amphiphilic Stimuli-Responsive Diamond-Type Bicontinuous Cubic Phase. Journal of the American Chemical Society, 2007, 129, 13474-13479.	6.6	96
21	Effects of extracellular magnesium on the differentiation and function of human osteoclasts. Acta Biomaterialia, 2014, 10, 2843-2854.	4.1	96
22	Magnesium-based implants: a mini-review. Magnesium Research, 2014, 27, 142-154.	0.4	96
23	Polarisation of valence and non-strange sea quarks in the nucleon from semi-inclusive spin asymmetries. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1996, 369, 93-100.	1.5	95
24	Microstructure, mechanical and corrosion properties of Mg–Dy–Gd–Zr alloys for medical applications. Acta Biomaterialia, 2013, 9, 8499-8508.	4.1	92
25	Spin asymmetry in muon-proton deep inelastic scattering on a transversely-polarized target. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1994, 336, 125-130.	1.5	89
26	Element distribution in the corrosion layer and cytotoxicity of alloy Mg–10Dy during in vitro biodegradation. Acta Biomaterialia, 2013, 9, 8475-8487.	4.1	87
27	Bioactive plasma electrolytic oxidation coatings on Mg-Ca alloy to control degradation behaviour. Surface and Coatings Technology, 2017, 315, 454-467.	2.2	87
28	Mechanical and corrosion properties of binary Mg–Dy alloys for medical applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 1827-1834.	1.7	86
29	In vitro evaluation of the ZX11 magnesium alloy as potential bone plate: Degradability and mechanical integrity. Acta Biomaterialia, 2019, 97, 608-622.	4.1	86
30	XPS Studies of Magnesium Surfaces after Exposure to Dulbecco's Modified Eagle Medium, Hank's Buffered Salt Solution, and Simulated Body Fluid. Advanced Engineering Materials, 2010, 12, B699.	1.6	83
31	Unphysiologically High Magnesium Concentrations Support Chondrocyte Proliferation and Redifferentiation. Tissue Engineering, 2006, 12, 3545-3556.	4.9	79
32	Thermotropic and lyotropic properties of long chain alkyl glycopyranosides. Part II. Disaccharide headgroups. Chemistry and Physics of Lipids, 2000, 106, 157-179.	1.5	78
33	Proton- and deuteron spin targets in bioligical structure research. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1995, 356, 124-132.	0.7	76
34	Long-Living Intermediates during a Lamellar to a Diamond-Cubic Lipid Phase Transition: A Small-Angle X-Ray Scattering Investigation. Langmuir, 2009, 25, 3734-3742.	1.6	76
35	Intramedullary Mg2Ag nails augment callus formation during fracture healing in mice. Acta Biomaterialia, 2016, 36, 350-360.	4.1	75
36	Structural rearrangement of model membranes by the peptide antibiotic NK-2. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1669, 125-134.	1.4	74

#	Article	IF	CITATIONS
37	Baicalin loaded in folate-PEG modified liposomes for enhanced stability and tumor targeting. Colloids and Surfaces B: Biointerfaces, 2016, 140, 74-82.	2.5	73
38	In vitro mechanical and corrosion properties of biodegradable Mg-Ag alloys. Materials and Corrosion - Werkstoffe Und Korrosion, 2014, 65, 569-576.	0.8	72
39	On the nanoparticle synthesis in microemulsions: detailed characterization of an applied reaction mixture. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 163, 3-15.	2.3	70
40	Spin asymmetriesA1of the proton and the deuteron in the lowxand lowQ2region from polarized high energy muon scattering. Physical Review D, 1999, 60, .	1.6	69
41	Earliest Stage of the Tetrahedral Nanochannel Formation in Cubosome Particles from Unilamellar Nanovesicles. Langmuir, 2012, 28, 16647-16655.	1.6	68
42	Sterically stabilized spongosomes for multidrug delivery of anticancer nanomedicines. Journal of Materials Chemistry B, 2015, 3, 7734-7744.	2.9	68
43	Gadolinium accumulation in organs of Sprague–Dawley® rats after implantation of a biodegradable magnesium-gadolinium alloy. Acta Biomaterialia, 2017, 48, 521-529.	4.1	68
44	Reprint of: Improved cytotoxicity testing of magnesium materials. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 1773-1777.	1.7	67
45	Effects of magnesium degradation products on mesenchymal stem cell fate and osteoblastogenesis. Gene, 2016, 575, 9-20.	1.0	66
46	Effects of corrosion environment and proteins on magnesium corrosion. Corrosion Engineering Science and Technology, 2012, 47, 335-339.	0.7	63
47	Local pH and Its Evolution Near Mg Alloy Surfaces Exposed to Simulated Body Fluids. Advanced Materials Interfaces, 2018, 5, 1800169.	1.9	63
48	Comparison of Small-Angle Scattering Methods for the Structural Analysis of Octyl-Î ² -maltopyranoside Micelles. Journal of Physical Chemistry B, 2002, 106, 7596-7604.	1.2	62
49	Magnesium degradation influenced by buffering salts in concentrations typical of in vitro and in vivo models. Materials Science and Engineering C, 2016, 58, 817-825.	3.8	61
50	Open porous dealloying-based biomaterials as a novel biomaterial platform. Materials Science and Engineering C, 2018, 88, 95-103.	3.8	60
51	Influence of ageing treatment on microstructure, mechanical and bio-corrosion properties of Mg–Dy alloys. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 13, 36-44.	1.5	59
52	Sintering behavior and mechanical properties of a metal injection molded Ti–Nb binary alloy as biomaterial. Journal of Alloys and Compounds, 2015, 640, 393-400.	2.8	59
53	Magnesium degradation as determined by artificial neural networks. Acta Biomaterialia, 2013, 9, 8722-8729.	4.1	57
54	Degradation testing of Mg alloys in Dulbecco's modified eagle medium: Influence of medium sterilization. Materials Science and Engineering C, 2016, 62, 68-78.	3.8	57

#	Article	IF	CITATIONS
55	In vivo and in vitro degradation comparison of pure Mg, Mg-10Gd and Mg-2Ag: a short term study. , 2017, 33, 90-104.		56
56	Membrane Activity of Biomimetic Facially Amphiphilic Antibioticsâ€. Journal of Physical Chemistry B, 2006, 110, 3527-3532.	1.2	54
57	Amphiphilic Branched Polymers as Antimicrobial Agents. Macromolecular Bioscience, 2008, 8, 903-915.	2.1	54
58	Aggregate Structure in Concentrated Liquid Dispersions of Ultrananocrystalline Diamond by Small-Angle Neutron Scattering. Journal of Physical Chemistry C, 2009, 113, 9473-9479.	1.5	53
59	Different effects of single protein vs. protein mixtures on magnesium degradation under cell culture conditions. Acta Biomaterialia, 2019, 98, 256-268.	4.1	51
60	Comparative structure analysis of non-polar organic ferrofluids stabilized by saturated mono-carboxylic acids. Journal of Colloid and Interface Science, 2009, 334, 37-41.	5.0	49
61	Micellization Activity of the Natural Lipopeptide [Glu ₁ , Asp ₅] Surfactin-C15 in Aqueous Solution. Journal of Physical Chemistry B, 2010, 114, 2712-2718.	1.2	48
62	Molecular basis for membrane selectivity of NK-2, a potent peptide antibiotic derived from NK-lysin. Biochimica Et Biophysica Acta - Biomembranes, 2003, 1612, 164-171.	1.4	46
63	Mechanical properties and corrosion behavior of Mg–Gd–Ca–Zr alloys for medical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 47, 38-48.	1.5	46
64	Effect of magnesium-degradation products and hypoxia on the angiogenesis of human umbilical vein endothelial cells. Acta Biomaterialia, 2019, 98, 269-283.	4.1	45
65	Localization of the Trigger Factor Binding Site on the Ribosomal 50S Subunit. Journal of Molecular Biology, 2003, 326, 887-897.	2.0	44
66	lon release from magnesium materials in physiological solutions under different oxygen tensions. Journal of Materials Science: Materials in Medicine, 2012, 23, 9-24.	1.7	44
67	On the Determination of Magnesium Degradation Rates under Physiological Conditions. Materials, 2016, 9, 627.	1.3	44
68	Lubrication synergy: Mixture of hyaluronan and dipalmitoylphosphatidylcholine (DPPC) vesicles. Journal of Colloid and Interface Science, 2017, 488, 225-233.	5.0	42
69	Influence of the Microstructure and Silver Content on Degradation, Cytocompatibility, and Antibacterial Properties of Magnesium-Silver Alloys In Vitro. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-14.	1.9	42
70	Exploring the effects of organic molecules on the degradation of magnesium under cell culture conditions. Corrosion Science, 2018, 132, 35-45.	3.0	42
71	Fibrinogen and magnesium combination biomaterials modulate macrophage phenotype, NF-kB signaling and crosstalk with mesenchymal stem/stromal cells. Acta Biomaterialia, 2020, 114, 471-484.	4.1	42
72	The Degradation Interface of Magnesium Based Alloys in Direct Contact with Human Primary Osteoblast Cells. PLoS ONE, 2016, 11, e0157874.	1.1	41

#	Article	IF	CITATIONS
73	Structure of water-based ferrofluids with sodium oleate and polyethylene glycol stabilization by small-angle neutron scattering: contrast-variation experiments. Journal of Applied Crystallography, 2010, 43, 959-969.	1.9	40
74	Mixture of Nonionic/Ionic Surfactants for the Formulation of Nanostructured Lipid Carriers: Effects on Physical Properties. Langmuir, 2014, 30, 6920-6928.	1.6	40
75	Influence of the amount of intermetallics on the degradation of Mg-Nd alloys under physiological conditions. Acta Biomaterialia, 2021, 121, 695-712.	4.1	39
76	Comparison of the reaction of bone-derived cells to enhanced MgCl ₂ -salt concentrations. Biomatter, 2014, 4, e967616.	2.6	38
77	Blood compatibility of magnesium and its alloys. Acta Biomaterialia, 2015, 25, 384-394.	4.1	38
78	Doxorubicin hydrochloride-oleic acid conjugate loaded nanostructured lipid carriers for tumor specific drug release. Colloids and Surfaces B: Biointerfaces, 2016, 145, 95-103.	2.5	38
79	The Effect of Surface Treatments on the Degradation of Biomedical Mg Alloys—A Review Paper. Materials, 2018, 11, 2561.	1.3	38
80	Time-sequential corrosion behaviour observation of micro-alloyed Mg-0.5Zn-0.2Ca alloy via a quasi-in situ approach. Corrosion Science, 2019, 158, 108096.	3.0	38
81	Analysis of the structure of aqueous ferrofluids by the small-angle neutron scattering method. Physics of the Solid State, 2010, 52, 974-978.	0.2	37
82	The polarized target station at GKSS. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1995, 356, 133-137.	0.7	36
83	Structure of the elongating ribosome: Arrangement of the two tRNAs before and after translocation. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 945-950.	3.3	36
84	Optimization of Cell Adhesion on Mg Based Implant Materials by Pre-Incubation under Cell Culture Conditions. International Journal of Molecular Sciences, 2014, 15, 7639-7650.	1.8	36
85	Preparation and characterization of a nanostructured lipid carrier for a poorly soluble drug. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 455, 36-43.	2.3	36
86	Structure of DPPC–hyaluronan interfacial layers – effects of molecular weight and ion composition. Soft Matter, 2016, 12, 729-740.	1.2	36
87	In vitro degradation behavior of Mg scaffolds with three-dimensional interconnected porous structures for bone tissue engineering. Corrosion Science, 2018, 144, 301-312.	3.0	36
88	Anomalous small-angle X-ray scattering characterization of composites based on sulfonated poly(ether ether ketone), zirconium phosphates, and zirconium oxide. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 567-575.	2.4	35
89	Structure and in Vitro Biological Testing of Water-Based Ferrofluids Stabilized by Monocarboxylic Acids. Langmuir, 2010, 26, 8503-8509.	1.6	35
90	Direct localization of the tRNAs within the elongating ribosome by means of neutron scattering (proton-spin contrast-variation). Journal of Molecular Biology, 1997, 266, 343-356.	2.0	34

#	Article	IF	CITATIONS
91	The effect of temperature on supported dipalmitoylphosphatidylcholine (DPPC) bilayers: Structure and lubrication performance. Journal of Colloid and Interface Science, 2015, 445, 84-92.	5.0	34
92	Microstructure-corrosion behaviour relationship of micro-alloyed Mg-0.5Zn alloy with the addition of Ca, Sr, Ag, In and Cu. Materials and Design, 2020, 195, 108980.	3.3	34
93	Extended Conformation of Mammalian Translation Elongation Factor 1A in Solutionâ€. Biochemistry, 2002, 41, 15342-15349.	1.2	33
94	Behavior of bone cells in contact with magnesium implant material. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2017, 105, 165-179.	1.6	33
95	Adsorption of Proteins on Degradable Magnesium—Which Factors are Relevant?. ACS Applied Materials & Interfaces, 2018, 10, 42175-42185.	4.0	33
96	Determination of micelle structure of octyl-β-glucoside in aqueous solution by small angel neutron scattering and geometric analysis. Journal of Molecular Liquids, 2000, 89, 239-249.	2.3	32
97	Determination of the Structure of Complexes Formed by a Cationic Polymer and Mixed Anionic Surfactants by Small-Angle Neutron Scattering. Langmuir, 2000, 16, 10061-10068.	1.6	32
98	Structures of micelles formed by synthetic alkyl glycosides with unsaturated alkyl chains. Journal of Colloid and Interface Science, 2005, 284, 704-713.	5.0	32
99	Phospholipids as implant coatings. Journal of Materials Science: Materials in Medicine, 2007, 18, 367-380.	1.7	31
100	Preparation and characterization of 4-dedimethylamino sancycline (CMT-3) loaded nanostructured lipid carrier (CMT-3/NLC) formulations. International Journal of Pharmaceutics, 2013, 450, 225-234.	2.6	31
101	Influence of Magnesium Alloy Degradation on Undifferentiated Human Cells. PLoS ONE, 2015, 10, e0142117.	1.1	31
102	Preclinical in vivo research of magnesium-based implants for fracture treatment: A systematic review of animal model selection and study design. Journal of Magnesium and Alloys, 2021, 9, 351-361.	5.5	31
103	The Interface Between Degradable Mg and Tissue. Jom, 2019, 71, 1447-1455.	0.9	30
104	Metal Injection Molding (MIM) of Magnesium and Its Alloys. Metals, 2016, 6, 118.	1.0	29
105	Interaction of a biosurfactant, Surfactin with a cationic Gemini surfactant in aqueous solution. Journal of Colloid and Interface Science, 2016, 481, 201-209.	5.0	29
106	Analysis of the bone ultrastructure around biodegradable Mg–xGd implants using small angle X-ray scattering and X-ray diffraction. Acta Biomaterialia, 2020, 101, 637-645.	4.1	29
107	Influence of Dy in solid solution on the degradation behavior of binary Mg-Dy alloys in cell culture medium. Materials Science and Engineering C, 2017, 75, 1351-1358.	3.8	28
108	Quantitative characterization of degradation processes in situ by means of a bioreactor coupled flow chamber under physiological conditions using time″apse SRµCT. Materials and Corrosion - Werkstoffe Und Korrosion, 2018, 69, 298-306.	0.8	28

#	Article	IF	CITATIONS
109	All-atom molecular dynamics simulation studies of fully hydrated gel phase DPPG and DPPE bilayers. Journal of Molecular Structure, 2009, 921, 38-50.	1.8	27
110	Interaction between the Natural Lipopeptide [Glu ₁ , Asp ₅] Surfactin-C15 and Hemoglobin in Aqueous Solution. Biomacromolecules, 2010, 11, 593-599.	2.6	26
111	Degradation rates and products of pure magnesium exposed to different aqueous media under physiological conditions. BioNanoMaterials, 2016, 17, .	1.4	26
112	Characterisation of structure and aggregation processes of aquatic humic substances using small-angle scattering and X-ray microscopy. Analytical and Bioanalytical Chemistry, 2003, 376, 618-625.	1.9	25
113	Production, characterisation, and cytocompatibility of porous titanium-based particulate scaffolds. Journal of Materials Science: Materials in Medicine, 2013, 24, 2337-2358.	1.7	25
114	Magnesium Powder Injection Molding (MIM) of Orthopedic Implants for Biomedical Applications. Jom, 2016, 68, 1191-1197.	0.9	24
115	Cytotoxicity of biodegradable magnesium alloy WE43 to tumor cells in vitro: Bioresorbable implants with antitumor activity?. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 167-173.	1.6	24
116	Titanium carbide precipitation in Ti–22Nb alloy fabricated by metal injection moulding. Powder Metallurgy, 2014, 57, 2-4.	0.9	23
117	Microhardness and In Vitro Corrosion of Heat-Treated Mg–Y–Ag Biodegradable Alloy. Materials, 2017, 10, 55.	1.3	23
118	Large enhancement of deuteron polarization with frequency modulated microwaves. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1996, 372, 339-343.	0.7	22
119	Folate receptor targeted bufalin/β-cyclodextrin supramolecular inclusion complex for enhanced solubility and anti-tumor efficiency of bufalin. Materials Science and Engineering C, 2017, 78, 609-618.	3.8	22
120	Exploring key ionic interactions for magnesium degradation in simulated body fluid – A data-driven approach. Corrosion Science, 2021, 182, 109272.	3.0	22
121	Localization of the protein L2 in the 50 S subunit and the 70 S E. coli ribosome. Journal of Molecular Biology, 2001, 305, 167-177.	2.0	21
122	Structure of Complexes Formed by PDADMAC and Sodium Palmitate. Langmuir, 2002, 18, 7272-7278.	1.6	21
123	Ti–6Al–4V–0.5B—A Modified Alloy for Implants Produced by Metal Injection Molding. Advanced Engineering Materials, 2011, 13, B440.	1.6	21
124	Interaction of the Biosurfactant, Surfactin with Betaines in Aqueous Solution. Langmuir, 2013, 29, 10648-10657.	1.6	21
125	Investigation of the inverse piezoelectric effect of trabecular bone on a micrometer length scale using synchrotron radiation. Acta Biomaterialia, 2015, 25, 339-346.	4.1	21
126	The influence of hyaluronan on the structure of a DPPC—bilayer under high pressures. Colloids and Surfaces B: Biointerfaces, 2016, 142, 230-238.	2.5	21

#	Article	IF	CITATIONS
127	Alloying effect of silver in magnesium on the development of microstructure and mechanical properties by indirect extrusion. Journal of Magnesium and Alloys, 2021, 9, 112-122.	5.5	21
128	The in situ structure of ribosomal proteins from polarized neutron scattering. Journal of Molecular Structure, 1996, 383, 201-211.	1.8	20
129	On structural features of fullerene C60 dissolved in carbon disulfide: Complementary study by small-angle neutron scattering and molecular dynamic simulations. Journal of Chemical Physics, 2010, 132, 164515.	1.2	20
130	A Porous TiAl6V4 Implant Material for Medical Application. International Journal of Biomaterials, 2014, 2014, 1-8.	1.1	20
131	The Effect of Equal-Channel Angular Pressing on the Microstructure, the Mechanical and Corrosion Properties and the Anti-Tumor Activity of Magnesium Alloyed with Silver. Materials, 2019, 12, 3832.	1.3	20
132	Assessing the microstructure and in vitro degradation behavior of Mg-xGd screw implants using µCT. Journal of Magnesium and Alloys, 2021, 9, 2207-2222.	5.5	20
133	Insights into the Interactions among Surfactin, Betaines, and PAM: Surface Tension, Small-Angle Neutron Scattering, and Small-Angle X-ray Scattering Study. Langmuir, 2014, 30, 3363-3372.	1.6	19
134	The effect of osteoblasts on the surface oxidation processes of biodegradable Mg and Mg-Ag alloys studied by synchrotron IR microspectroscopy. Materials Science and Engineering C, 2018, 91, 659-668.	3.8	19
135	Wide Range Mechanical Customization of Mg-Gd Alloys With Low Degradation Rates by Extrusion. Frontiers in Materials, 2019, 6, .	1.2	19
136	Surface Functionalization of Biomedical Ti-6Al-7Nb Alloy by Liquid Metal Dealloying. Nanomaterials, 2020, 10, 1479.	1.9	19
137	Utilizing Synchrotron Radiation for the Characterization of Biodegradable Magnesium Alloys—From Alloy Development to the Application as Implant Material. Advanced Engineering Materials, 2021, 23, 2100197.	1.6	19
138	Membrane association and selectivity of the antimicrobial peptide NKâ€2: a molecular dynamics simulation study. Journal of Peptide Science, 2009, 15, 654-667.	0.8	18
139	Fast corroding, thin magnesium coating displays antibacterial effects and low cytotoxicity. Biofouling, 2017, 33, 294-305.	0.8	18
140	Increased levels of sodium chloride directly increase osteoclastic differentiation and resorption in mice and men. Osteoporosis International, 2017, 28, 3215-3228.	1.3	18
141	High-resolution ex vivo analysis of the degradation and osseointegration of Mg-xGd implant screws in 3D. Bioactive Materials, 2022, 13, 37-52.	8.6	18
142	A line-shape analysis for spin-1 NMR signals. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1997, 398, 109-125.	0.7	17
143	X-ray and neutron investigation of self-assembled lipid layers on a titanium surface. Biointerphases, 2013, 8, 21.	0.6	17
144	Mg Biodegradation Mechanism Deduced from the Local Surface Environment under Simulated Physiological Conditions. Advanced Healthcare Materials, 2021, 10, e2100053.	3.9	17

#	Article	IF	CITATIONS
145	Biological Multi-layer Systems as Implant Surface Modification. Materialwissenschaft Und Werkstofftechnik, 2003, 34, 1084-1093.	0.5	16
146	Cytocompatibility of a free machining titanium alloy containing lanthanum. Journal of Biomedical Materials Research - Part A, 2009, 90A, 931-939.	2.1	16
147	Powder metal injection moulding and heat treatment of AZ81 Mg alloy. Journal of Materials Processing Technology, 2019, 267, 241-246.	3.1	16
148	Macrophage-derived oncostatin M/bone morphogenetic protein 6 in response to Mg-based materials influences pro-osteogenic activity of human umbilical cord perivascular cells. Acta Biomaterialia, 2021, 133, 268-279.	4.1	16
149	Implant degradation of low-alloyed Mg–Zn–Ca in osteoporotic, old and juvenile rats. Acta Biomaterialia, 2022, 147, 427-438.	4.1	16
150	SAXS/WAXS characterization of proton-conducting polymer membranes containing phosphomolybdic acid. Journal of Non-Crystalline Solids, 2005, 351, 2194-2199.	1.5	14
151	Chondrogenic differentiation of ATDC5-cells under the influence of Mg and Mg alloy degradation. Materials Science and Engineering C, 2017, 72, 378-388.	3.8	14
152	Alloying and Processing Effects on the Microstructure, Mechanical Properties, and Degradation Behavior of Extruded Magnesium Alloys Containing Calcium, Cerium, or Silver. Materials, 2020, 13, 391.	1.3	14
153	Effects of Corroded and Non-Corroded Biodegradable Mg and Mg Alloys on Viability, Morphology and Differentiation of MC3T3-E1 Cells Elicited by Direct Cell/Material Interaction. PLoS ONE, 2016, 11, e0159879.	1.1	14
154	Dynamic <i>in vivo</i> monitoring of fracture healing process in response to magnesium implant with multimodal imaging: pilot longitudinal study in a rat external fixation model. Biomaterials Science, 2022, 10, 1532-1543.	2.6	14
155	Interaction of an Antimicrobial Peptide with Membranes: Experiments and Simulations with NKCS. Journal of Physical Chemistry B, 2010, 114, 4230-4237.	1.2	13
156	NKCS, a Mutant of the NK-2 Peptide, Causes Severe Distortions and Perforations in Bacterial, But Not Human Model Lipid Membranes. Molecules, 2015, 20, 6941-6958.	1.7	13
157	Measurement of the SMC muon beam polarisation using the asymmetry in the elastic scattering off polarised electrons. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2000, 443, 1-19.	0.7	12
158	Influences of local polymer–solvent π–π-interaction on dynamics of phenyl ring rotation and its role on photophysics of conjugated polymer. European Polymer Journal, 2007, 43, 478-487.	2.6	12
159	Studying solutions at high shear rates: a dedicated microfluidics setup. Journal of Synchrotron Radiation, 2016, 23, 480-486.	1.0	12
160	InÂvitro biodegradation testing of Mg-alloy EZK400 and manufacturing of implant prototypes using PM (powder metallurgy) methods. Bioactive Materials, 2018, 3, 213-217.	8.6	12
161	A simple model for longâ€ŧime degradation of magnesium under physiological conditions. Materials and Corrosion - Werkstoffe Und Korrosion, 2018, 69, 191-196.	0.8	12
162	Mechanical properties and degradation behavior of binary magnesium-silver alloy sheets. Journal of Physics and Chemistry of Solids, 2019, 133, 142-150.	1.9	12

#	Article	IF	CITATIONS
163	Hypoxia influences the effects of magnesium degradation products on the interactions between endothelial and mesenchymal stem cells. Acta Biomaterialia, 2020, 101, 624-636.	4.1	12
164	Pore characterization of PM Mg–0.6Ca alloy and its degradation behavior under physiological conditions. Journal of Magnesium and Alloys, 2021, 9, 686-703.	5.5	12
165	Magnesium ions regulate mesenchymal stem cells population and osteogenic differentiation: A fuzzy agent-based modeling approach. Computational and Structural Biotechnology Journal, 2021, 19, 4110-4122.	1.9	12
166	Capturing shrinkage and neck growth with phase field simulations of the solid state sintering. Modelling and Simulation in Materials Science and Engineering, 2021, 29, 075008.	0.8	12
167	Synthesis and mesogenic properties of a Y-shaped glyco-glycero-lipid. Chemistry and Physics of Lipids, 2004, 131, 51-61.	1.5	11
168	Phosphatidylethanolamine biomimetic coating increases mesenchymal stem cell osteoblastogenesis. Journal of Materials Science: Materials in Medicine, 2014, 25, 2561-2571.	1.7	11
169	Degradation behaviour of Mg-4Ag and Mg-5Gd alloys under in-vitro conditions and different time-frames. Journal of Alloys and Compounds, 2019, 774, 980-987.	2.8	11
170	Lipid-Iron Nanoparticle with a Cell Stress Release Mechanism Combined with a Local Alternating Magnetic Field Enables Site-Activated Drug Release. Cancers, 2020, 12, 3767.	1.7	11
171	Deteriorated corrosion performance of micro-alloyed Mg-Zn alloy after heat treatment and mechanical processing. Journal of Materials Science and Technology, 2021, 92, 214-224.	5.6	11
172	Evaluating the morphology of the degradation layer of pure magnesium via 3D imaging at resolutions below 40Anm. Bioactive Materials, 2021, 6, 4368-4376.	8.6	11
173	Mapping proteins of the 50S subunit from Escherichia coli ribosomes. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2001, 1520, 7-20.	2.4	10
174	Systematically Designed Periodic Electrophoretic Deposition for Decorating 3D Carbon-Based Scaffolds with Bioactive Nanoparticles. ACS Biomaterials Science and Engineering, 2019, 5, 4393-4404.	2.6	10
175	Proteome analysis of human mesenchymal stem cells undergoing chondrogenesis when exposed to the products of various magnesium-based materials degradation. Bioactive Materials, 2019, 4, 168-188.	8.6	10
176	Optimizing an Osteosarcoma-Fibroblast Coculture Model to Study Antitumoral Activity of Magnesium-Based Biomaterials. International Journal of Molecular Sciences, 2020, 21, 5099.	1.8	10
177	Effects of Intermetallic Microstructure on Degradation of Mg-5Nd Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 5498-5515.	1.1	10
178	The Effect of Equal-Channel Angular Pressing on Microstructure, Mechanical Properties, and Biodegradation Behavior of Magnesium Alloyed with Silver and Gadolinium. Crystals, 2020, 10, 918.	1.0	10
179	Tissue responses after implantation of biodegradable Mg alloys evaluated by multimodality 3D microâ€bioimaging in vivo. Journal of Biomedical Materials Research - Part A, 2021, 109, 1521-1529.	2.1	10
180	Degradation Analysis of Thin Mg-xAg Wires Using X-ray Near-Field Holotomography. Metals, 2021, 11, 1422.	1.0	10

11

#	Article	IF	CITATIONS
181	Superior fatigue endurance exempt from high processing cleanliness of Metal-Injection-Molded β Ti-Nb-Zr for bio-tolerant applications. Materials and Design, 2021, 211, 110141.	3.3	10
182	Localization of Proteins and tRNA Molecules in the 70S Ribosome of theEscherichia coliBacteria with Polarized Neutron Scattering. Journal of Applied Crystallography, 1997, 30, 1125-1131.	1.9	9
183	Structural polymorphism of hydrated ether-linked dimyristyl maltoside and melibioside. Chemistry and Physics of Lipids, 2008, 151, 18-29.	1.5	9
184	Examination of the inflammatory response following implantation of titanium plates coated with phospholipids in rats. Journal of Materials Science: Materials in Medicine, 2011, 22, 1015-1026.	1.7	9
185	Proteomic profile of mouse fibroblasts exposed to pure magnesium extract. Materials Science and Engineering C, 2016, 69, 522-531.	3.8	9
186	Acetic Acid Etching of Mg-xGd Alloys. Metals, 2019, 9, 117.	1.0	9
187	Magnetron sputtered freestanding MgAg films with ultra-low corrosion rate. Acta Biomaterialia, 2019, 98, 81-87.	4.1	9
188	The impact of brain cell metabolism and extracellular matrix on magnesium degradation. Acta Biomaterialia, 2020, 116, 426-437.	4.1	9
189	Slow degrading Mg-based materials induce tumor cell dormancy on an osteosarcoma-fibroblast coculture model. Bioactive Materials, 2022, 16, 320-333.	8.6	9
190	Scaling the U-net: segmentation of biodegradable bone implants in high-resolution synchrotron radiation microtomograms. Scientific Reports, 2021, 11, 24237.	1.6	9
191	Polarized Neutron Scattering from Polarized Nuclei Near Paramagnetic Centers. Journal of Applied Crystallography, 1997, 30, 839-843.	1.9	8
192	Self-Assembly Properties of Alkyloxyethyl β-Glycosides with Different Types of Carbohydrate Headgroups. Langmuir, 2007, 23, 11488-11495.	1.6	8
193	Surface topography and cytocompatibility of metal injection molded Ti–22Nb alloy as biomaterial. Transactions of Nonferrous Metals Society of China, 2018, 28, 1342-1350.	1.7	8
194	Effects of degradable magnesium on paracrine signaling between human umbilical cord perivascular cells and peripheral blood mononuclear cells. Biomaterials Science, 2020, 8, 5969-5983.	2.6	8
195	Tensile toughening of powder-injection-molded β Ti-Nb-Zr biomaterials by adjusting TiC particle distribution from aligned to dispersed pattern. Applied Materials Today, 2020, 19, 100630.	2.3	8
196	Proteins and medium-flow conditions: how they influence the degradation of magnesium. Surface Innovations, 2020, 8, 224-233.	1.4	8
197	Anti-tumour activity of Mg-6%Ag and Mg-10%Gd alloys in mice with inoculated melanoma. Materials Science and Engineering C, 2021, 130, 112464.	3.8	8
198	Multimodal ex vivo methods reveal that Gd-rich corrosion byproducts remain at the implant site of biodegradable Mg-Gd screws. Acta Biomaterialia, 2021, 136, 582-591.	4.1	8

#	Article	IF	CITATIONS
199	Ribosomal Elongation Cycle. , 0, , 319-335.		8
200	Characterization of proton-conducting organic-inorganic polymeric materials by ASAXS. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 2981-2992.	2.4	7
201	Anti-Invar properties and magnetic order in fcc Fe–Ni–C alloy. Journal of Magnetism and Magnetic Materials, 2011, 323, 2786-2791.	1.0	7
202	Elemental mapping of biodegradable magnesium-based implants in bone and soft tissue by means of μ X-ray fluorescence analysis. Journal of Analytical Atomic Spectrometry, 2019, 34, 356-365.	1.6	7
203	Effects of proteins on magnesium degradation - static vs. dynamic conditions. Journal of Magnesium and Alloys, 2023, 11, 1332-1342.	5.5	7
204	Impact of degradable magnesium implants on osteocytes in single and triple cultures. Materials Science and Engineering C, 2022, 134, 112692.	3.8	7
205	Small Angle Scattering in Ribosomal Structure Research: Localization of the Messenger RNA within Ribosomal Elongation States. Biological Chemistry, 1998, 379, 807-818.	1.2	6
206	Small-angle neutron scattering contrast variation on magnetite-myristic acid-benzene magnetic fluid. Journal of Surface Investigation, 2009, 3, 1-4.	0.1	6
207	Corrosion Behavior of As-Cast Binary Mg-Dy Alloys. Materials Science Forum, 2011, 690, 417-421.	0.3	6
208	Influence of various sterilization methods on hardness, grain size and corrosion rate of a Mg6Ag-alloy. BioNanoMaterials, 2015, 16, .	1.4	6
209	An elementary simulation model for neck growth and shrinkage during solid phase sintering. Materialia, 2018, 3, 338-346.	1.3	6
210	Influence of the Molecular Weight and the Presence of Calcium Ions on the Molecular Interaction of Hyaluronan and DPPC. Molecules, 2020, 25, 3907.	1.7	6
211	A load frame for in situ tomography at PETRA III. , 2019, , .		6
212	Computational modelling of magnesium degradation in simulated body fluid under physiological conditions. Journal of Magnesium and Alloys, 2022, 10, 965-978.	5.5	6
213	Characterization of Phospholipid Bilayers on Tiâ€6Alâ€4V and Tiâ€6Alâ€7Nb. Advanced Engineering Materials, 2008, 10, B47.	1.6	5
214	Swelling of a Sponge Lipid Phase via Incorporation of a Nonionic Amphiphile: SANS and SAXS Studies. , 2011, , 1-6.		5
215	Differential apoptotic response of MC3T3-E1 pre-osteoblasts to biodegradable magnesium alloys in an in vitro direct culture model. Journal of Materials Science: Materials in Medicine, 2017, 28, 155.	1.7	5
216	Visualization of Implant Failure by Synchrotron Tomography. Minerals, Metals and Materials Series, 2018, , 275-284.	0.3	5

#	Article	IF	CITATIONS
217	Simulation of neck growth and shrinkage for realistic temperature profiles – Determination of diffusion coefficients in a practical oriented procedure. Scripta Materialia, 2019, 168, 108-113.	2.6	5
218	Evaluating metallic artefact of biodegradable magnesium-based implants in magnetic resonance imaging. Bioactive Materials, 2022, 15, 382-391.	8.6	5
219	Structural analysis of refractory organic substances by small-angle neutron scattering. Physica B: Condensed Matter, 1997, 234-236, 292-294.	1.3	4
220	Online SAXS investigations of polymeric hollow fibre membranes. Analytical and Bioanalytical Chemistry, 2003, 376, 602-607.	1.9	4
221	How thermotropic properties influence the formation of lyotropic aggregates near the critical micelle concentration. Journal of Thermal Analysis and Calorimetry, 2005, 82, 477-481.	2.0	4
222	Analysis of proton-conducting organic–inorganic hybrid materials based on sulphonated poly(ether) Tj ETQq0 C 355, 6-11.	0 rgBT /0 1.5	Overlock 10 T 4
223	Neutron and Xâ€Ray Techniques for Biological and Biomaterials Studies. Advanced Engineering Materials, 2011, 13, 747-766.	1.6	4
224	Dielectric barrier formation and tunneling magnetoresistance effect in strontium iron molybdate. Technical Physics Letters, 2013, 39, 552-555.	0.2	4
225	Influence of high hydrostatic pressure on solid supported DPPC bilayers with hyaluronan in the presence of Ca2+ ions. Soft Matter, 2019, 15, 7295-7304.	1.2	4
226	Nanotomographic evaluation of precipitate structure evolution in a Mg–Zn–Zr alloy during plastic deformation. Scientific Reports, 2020, 10, 16101.	1.6	4
227	Implant Surface Modification by Biological Multi-layer Systems. Materials Research Society Symposia Proceedings, 2002, 734, 861.	0.1	3
228	Complex solutions under shear and pressure: a rheometer setup for X-ray scattering experiments. Journal of Synchrotron Radiation, 2017, 24, 646-652.	1.0	3
229	Microstructure and Mechanical Properties of Mg-Gd Alloys as Biodegradable Implant Materials. Minerals, Metals and Materials Series, 2018, , 253-262.	0.3	3
230	In Vitro Investigation on Degradable Mg-Based Biomaterial under the Impact of the Serum Glycoprotein Fetuin. Materials, 2021, 14, 5005.	1.3	3
231	Evaluation of the degradation behavior of resorbable metal implants for in vivo osteosynthesis by synchrotron radiation based x-ray tomography and histology. Proceedings of SPIE, 2016, , .	0.8	3
232	Biodegradable magnesium-based implants in bone studied by synchrotron radiation microtomography. , 2017, , .		3
233	Revisiting the tolerance limit of Fe impurity in biodegradable magnesium. Scripta Materialia, 2022, 212, 114509.	2.6	3
234	Characterization of the deformation state of magnesium by electrical resistance. Scripta Materialia, 2022, 215, 114712.	2.6	3

#	Article	IF	CITATIONS
235	A large Streamer Chamber muon tracking detector in a high-flux fixed-target application. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 435, 354-374.	0.7	2
236	Structure of a Beheaded 30S Ribosomal Subunit from Thermus thermophilus. Journal of Molecular Biology, 1999, 292, 633-639.	2.0	2
237	Antimicrobial Peptides and Their Interactions with Model Membranes. Behavior Research Methods, 2010, , 147-165.	2.3	2
238	Diagnostic and analysis of aggregation stability of magnetic fluids for biomedical applications by small-angle neutron scattering. Journal of Physics: Conference Series, 2012, 345, 012028.	0.3	2
239	Charge transfer processes and magnetoresistance in strontium ferromolybdate with dielectric barriers. Physica Status Solidi (B): Basic Research, 2013, 250, 825-830.	0.7	2
240	Comparison of the Influence of Phospholipid-Coated Porous Ti-6Al-4V Material on the Osteosarcoma Cell Line Saos-2 and Primary Human Bone Derived Cells. Metals, 2016, 6, 66.	1.0	2
241	Neutron study of phospholipids 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-ethanolamine spray coating on titanium implants. Biointerphases, 2016, 11, 011002.	0.6	2
242	Magnesium degradation observed in situ under flow by synchrotron radiation based microtomography. , 2016, , .		2
243	Polyolefinâ€Magnesium Interactions Performing Powder Injection Molding Process. Advanced Engineering Materials, 2018, 20, 1800530.	1.6	2
244	Loading Psoralen into liposomes to enhance its stimulatory effect on the proliferation and differentiation of mouse calvarias osteoblasts. Journal of Dispersion Science and Technology, 2019, 40, 1531-1538.	1.3	2
245	Mesenchymal Stem Cell and Oxygen Modulate the Cocultured Endothelial Cells in the Presence of Magnesium Degradation Products. ACS Applied Bio Materials, 2021, 4, 2398-2407.	2.3	2
246	Degradation of Titanium Sintered with Magnesium: Effect of Hydrogen Uptake. Metals, 2021, 11, 527.	1.0	2
247	In Situ X-ray Synchrotron Radiation Analysis, Tensile- and Biodegradation Testing of Redox-Alloyed and Sintered MgCa-Alloy Parts Produced by Metal Injection Moulding. Metals, 2022, 12, 353.	1.0	2
248	Ribosomal structure research with spin contrast variation. Physica B: Condensed Matter, 1997, 234-236, 202-204.	1.3	1
249	Borate–sugar complexation-induced charging of n-octyl-β-d-glucopyranoside micelles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 251, 37-41.	2.3	1
250	Dynamically polarized hydrogen target as a broadband, wavelength-independent thermal neutron spin polarizer. Physica B: Condensed Matter, 2005, 356, 163-167.	1.3	1
251	Phosphatidylserine Selective Peptides As Novel Anti-cancer Agents. Biophysical Journal, 2009, 96, 157a.	0.2	1
252	Structural Aspects of the Interaction of Nk-2 Derived Peptides with Cancer Cells. Biophysical Journal, 2010, 98, 277a.	0.2	1

#	Article	IF	CITATIONS
253	Special issue "Biodegradable magnesium as implant material― BioNanoMaterials, 2015, 16, 1-2.	1.4	1
254	In Vitro Corrosion and Cytocompatibility Properties of Mg-2Gd-X(Ag, Ca) Alloys. , 2016, , 347-351.		1
255	Glioblastoma Cell Type-Specific Loading with Iron Oxide Magnetic Nanoparticles. BioNanoScience, 2016, 6, 297-307.	1.5	1
256	Understanding Protein Networks using Vester's Sensitivity Model. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 17, 1-1.	1.9	1
257	X-ray diffraction tomography as a tool to study the influence of biodegradable metal implant on the bone in 3D. , 2021, , .		1
258	Influence of Testing Environment on the Degradation Behavior of Magnesium Alloys for Bioabsorbable Implants. , 2015, , 499-506.		1
259	Influence of defects on damage tolerance of Metal-Injection-Molded β titanium alloys under static and dynamic loading. Powder Metallurgy, 2022, 65, 354-364.	0.9	1
260	Ribosomal structure research with polarized neutron scattering. Physica B: Condensed Matter, 1997, 241-243, 1152-1155.	1.3	0
261	Polarized neutron scattering from selectively polarized proton spin domains. Physica B: Condensed Matter, 1997, 234-236, 205-206.	1.3	0
262	In situstructure determination of the ribosomal protein L14 in the large 50S subunit ofEscherichia coli. Journal of Applied Crystallography, 2000, 33, 524-525.	1.9	0
263	Mol^ssbauer and SANS Studies of Anti-Invar Fe-Ni-C Alloy under Magnetic Field. , 2010, , .		0
264	Computational modeling of anionic and zwitterionic lipid bilayers for investigating surface activities of bioactive molecules. , 2008, , .		0
265	Polarized neutron scattering from polarized nuclear spins. Acta Crystallographica Section A: Foundations and Advances, 1996, 52, C485-C485.	0.3	0