
Andrea Idili

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5269374/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Programmable pH-Triggered DNA Nanoswitches. Journal of the American Chemical Society, 2014, 136, 5836-5839.	13.7	296
2	Triplex DNA Nanostructures: From Basic Properties to Applications. Angewandte Chemie - International Edition, 2017, 56, 15210-15233.	13.8	257
3	Selective control of reconfigurable chiral plasmonic metamolecules. Science Advances, 2017, 3, e1602803.	10.3	178
4	Rapid and Efficient Detection of the SARS-CoV-2 Spike Protein Using an Electrochemical Aptamer-Based Sensor. ACS Sensors, 2021, 6, 3093-3101.	7.8	129
5	Rational Design of pH-Controlled DNA Strand Displacement. Journal of the American Chemical Society, 2014, 136, 16469-16472.	13.7	110
6	Antibody-powered nucleic acid release using a DNA-based nanomachine. Nature Communications, 2017, 8, 15150.	12.8	108
7	General Strategy to Introduce pH-Induced Allostery in DNA-Based Receptors to Achieve Controlled Release of Ligands. Nano Letters, 2015, 15, 4467-4471.	9.1	91
8	Calibration-Free Measurement of Phenylalanine Levels in the Blood Using an Electrochemical Aptamer-Based Sensor Suitable for Point-of-Care Applications. ACS Sensors, 2019, 4, 3227-3233.	7.8	78
9	Seconds-resolved pharmacokinetic measurements of the chemotherapeutic irinotecan <i>in situ</i> in the living body. Chemical Science, 2019, 10, 8164-8170.	7.4	74
10	Folding-Upon-Binding and Signal-On Electrochemical DNA Sensor with High Affinity and Specificity. Analytical Chemistry, 2014, 86, 9013-9019.	6.5	72
11	Real-Time Monitoring of a Protein Biomarker. ACS Sensors, 2020, 5, 1877-1881.	7.8	60
12	Thermodynamic Basis for Engineering High-Affinity, High-Specificity Binding-Induced DNA Clamp Nanoswitches. ACS Nano, 2013, 7, 10863-10869.	14.6	58
13	Controlling Hybridization Chain Reactions with pH. Nano Letters, 2015, 15, 5539-5544.	9.1	49
14	Electronic control of DNA-based nanoswitches and nanodevices. Chemical Science, 2016, 7, 66-71.	7.4	48
15	Triplexâ€ÐNAâ€Nanostrukturen: von grundlegenden Eigenschaften zu Anwendungen. Angewandte Chemie, 2017, 129, 15410-15434.	2.0	42
16	A modular electrochemical peptide-based sensor for antibody detection. Chemical Communications, 2014, 50, 8962.	4.1	40
17	DNA-Based Nanodevices Controlled by Purely Entropic Linker Domains. Journal of the American Chemical Society, 2018, 140, 14725-14734.	13.7	36
18	An electrochemical aptamer-based sensor for the rapid and convenient measurement of l-tryptophan. Analytical and Bioanalytical Chemistry, 2019, 411, 4629-4635.	3.7	35

Andrea Idili

#	Article	IF	CITATIONS
19	Seconds-Resolved, In Situ Measurements of Plasma Phenylalanine Disposition Kinetics in Living Rats. Analytical Chemistry, 2021, 93, 4023-4032.	6.5	35
20	Nanodiagnostics to Face SARS-CoV-2 and Future Pandemics: From an Idea to the Market and Beyond. ACS Nano, 2021, 15, 17137-17149.	14.6	32
21	Programmable Bivalent Peptide–DNA Locks for pH-Based Control of Antibody Activity. ACS Central Science, 2020, 6, 22-31.	11.3	29
22	Low-Cost, User-Friendly, All-Integrated Smartphone-Based Microplate Reader for Optical-Based Biological and Chemical Analyses. Analytical Chemistry, 2022, 94, 1271-1285.	6.5	29
23	Determining the folding and binding free energy of DNA-based nanodevices and nanoswitches using urea titration curves. Nucleic Acids Research, 2017, 45, 7571-7580.	14.5	26
24	A modular clamp-like mechanism to regulate the activity of nucleic-acid target-responsive nanoswitches with external activators. Nanoscale, 2016, 8, 18057-18061.	5.6	25
25	A DNA Nanodevice That Loads and Releases a Cargo with Hemoglobin-Like Allosteric Control and Cooperativity. Nano Letters, 2017, 17, 3225-3230.	9.1	25
26	Allosteric DNA nanoswitches for controlled release of a molecular cargo triggered by biological inputs. Chemical Science, 2017, 8, 914-920.	7.4	23
27	Simulative and Experimental Characterization of a pH-Dependent Clamp-like DNA Triple-Helix Nanoswitch. Journal of the American Chemical Society, 2017, 139, 5321-5329.	13.7	22
28	Entropy-Based Rational Modulation of the p <i>K</i> _a of a Synthetic pH-Dependent Nanoswitch. Journal of the American Chemical Society, 2019, 141, 11367-11371.	13.7	21
29	Engineering a responsive DNA triple helix into an octahedral DNA nanostructure for a reversible opening/closing switching mechanism: a computational and experimental integrated study. Nucleic Acids Research, 2018, 46, 9951-9959.	14.5	14
30	Programmable RNA-based systems for sensing and diagnostic applications. Analytical and Bioanalytical Chemistry, 2019, 411, 4293-4302.	3.7	14
31	Paper-based biosensors for cancer diagnostics. Trends in Chemistry, 2022, 4, 554-567.	8.5	14
32	A Programmable Electrochemical Yâ€Shaped DNA Scaffold Sensor for the Singleâ€Step Detection of Antibodies and Proteins in Untreated Biological Fluids. Advanced Functional Materials, 2022, 32, .	14.9	10
33	Design and Characterization of pH-Triggered DNA Nanoswitches and Nanodevices Based on DNA Triplex Structures. Methods in Molecular Biology, 2018, 1811, 79-100.	0.9	8
34	Optical smartphone-based sensing: diagnostic of biomarkers. , 2022, , 277-302.		1
35	Continuous monitoring of molecular biomarkers in microfluidic devices. Progress in Molecular Biology and Translational Science, 2022, 187, 295-333.	1.7	0