James David West

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5269259/publications.pdf

Version: 2024-02-01

53794 79698 5,770 109 45 73 citations h-index g-index papers 112 112 112 6028 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Whole Exome Sequencing to Identify a Novel Gene (Caveolin-1) Associated With Human Pulmonary Arterial Hypertension. Circulation: Cardiovascular Genetics, 2012, 5, 336-343.	5.1	333
2	Pulmonary Hypertension in Transgenic Mice Expressing a Dominant-Negative BMPRII Gene in Smooth Muscle. Circulation Research, 2004, 94, 1109-1114.	4.5	251
3	Alterations in oestrogen metabolism: implications for higher penetrance of familial pulmonary arterial hypertension in females. European Respiratory Journal, 2009, 34, 1093-1099.	6.7	210
4	A potential therapeutic role for angiotensin-converting enzyme 2 in human pulmonary arterial hypertension. European Respiratory Journal, 2018, 51, 1702638.	6.7	183
5	Altered HOX and WNT7A expression in human lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 12776-12781.	7.1	182
6	Systems-level regulation of microRNA networks by miR-130/301 promotes pulmonary hypertension. Journal of Clinical Investigation, 2014, 124, 3514-3528.	8.2	182
7	Longitudinal Analysis Casts Doubt on the Presence of Genetic Anticipation in Heritable Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2012, 186, 892-896.	5.6	178
8	Evidence for Right Ventricular Lipotoxicity in Heritable Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 325-334.	5.6	146
9	Interaction of interleukin-6 and the BMP pathway in pulmonary smooth muscle. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 292, L1473-L1479.	2.9	139
10	Mutations of the \hat{l}^2 - and \hat{l}^3 -catenin genes are uncommon in human lung, breast, kidney, cervical and ovarian carcinomas. British Journal of Cancer, 2001, 85, 64-68.	6.4	137
11	Mice expressing BMPR2 ^{R899X} transgene in smooth muscle develop pulmonary vascular lesions. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 295, L744-L755.	2.9	130
12	Unrecognized glucose intolerance is common in pulmonary arterial hypertension. Journal of Heart and Lung Transplantation, 2011, 30, 904-11.	0.6	122
13	Low-Voltage-Activated (T-Type) Calcium Channels Control Proliferation of Human Pulmonary Artery Myocytes. Circulation Research, 2005, 96, 864-872.	4.5	121
14	Chromosome 3p14 Homozygous Deletions and Sequence Analysis of FRA3B. Human Molecular Genetics, 1997, 6, 193-203.	2.9	117
15	The Pathology of Bleomycin-Induced Fibrosis Is Associated with Loss of Resident Lung Mesenchymal Stem Cells That Regulate Effector T-cell Proliferation. Stem Cells, 2011, 29, 725-735.	3.2	116
16	The Endothelial Prolyl-4-Hydroxylase Domain 2/Hypoxia-Inducible Factor 2 Axis Regulates Pulmonary Artery Pressure in Mice. Molecular and Cellular Biology, 2016, 36, 1584-1594.	2.3	110
17	A potential role for insulin resistance in experimental pulmonary hypertension. European Respiratory Journal, 2013, 41, 861-871.	6.7	104
18	Gene expression in BMPR2 mutation carriers with and without evidence of Pulmonary Arterial Hypertension suggests pathways relevant to disease penetrance. BMC Medical Genomics, 2008, 1, 45.	1.5	103

#	Article	IF	Citations
19	BMPR2 expression is suppressed by signaling through the estrogen receptor. Biology of Sex Differences, 2012, 3, 6.	4.1	103
20	Neonatal lung side population cells demonstrate endothelial potential and are altered in response to hyperoxia-induced lung simplification. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 293, L941-L951.	2.9	92
21	Vildagliptin ameliorates pulmonary fibrosis in lipopolysaccharide-induced lung injury by inhibiting endothelial-to-mesenchymal transition. Respiratory Research, 2017, 18, 177.	3.6	91
22	Cytoskeletal defects in Bmpr2-associated pulmonary arterial hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 302, L474-L484.	2.9	90
23	The A _{2B} adenosine receptor modulates pulmonary hypertension associated with interstitial lung disease. FASEB Journal, 2012, 26, 2546-2557.	0.5	90
24	Gender, Sex Hormones and Pulmonary Hypertension. Pulmonary Circulation, 2013, 3, 294-314.	1.7	86
25	Estrogen Metabolite 16α-Hydroxyestrone Exacerbates Bone Morphogenetic Protein Receptor Type II–Associated Pulmonary Arterial Hypertension Through MicroRNA-29–Mediated Modulation of Cellular Metabolism. Circulation, 2016, 133, 82-97.	1.6	83
26	Molecular Definition of a Small Amplification Domain within 3q26 in Tumors of Cervix, Ovary, and Lung. Cancer Genetics and Cytogenetics, 2000, 117, 9-18.	1.0	82
27	Disruption of bone morphogenetic protein receptor 2 (BMPR2) in mammary tumors promotes metastases through cell autonomous and paracrine mediators. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2814-2819.	7.1	81
28	Interleukin-6 Causes Mild Pulmonary Hypertension and Augments Hypoxia-Induced Pulmonary Hypertension in Mice. Chest, 2005, 128, 572S-573S.	0.8	75
29	Mechanisms of Lipid Accumulation in the Bone Morphogenetic Protein Receptor Type 2 Mutant Right Ventricle. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 719-728.	5.6	75
30	Isolation and characterization of endothelial-to-mesenchymal transition cells in pulmonary arterial hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 314, L118-L126.	2.9	74
31	Peripheral Blood Signature of Vasodilator-Responsive Pulmonary Arterial Hypertension. Circulation, 2015, 131, 401-409.	1.6	72
32	Critical Genomic Networks and Vasoreactive Variants in Idiopathic Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 464-475.	5.6	69
33	Human PAH is characterized by a pattern of lipid-related insulin resistance. JCI Insight, 2019, 4, .	5.0	69
34	Role of <i>BMPR2</i> Alternative Splicing in Heritable Pulmonary Arterial Hypertension Penetrance. Circulation, 2012, 126, 1907-1916.	1.6	65
35	Testosterone Negatively Regulates Right Ventricular Load Stress Responses in Mice. Pulmonary Circulation, 2012, 2, 352-358.	1.7	64
36	BMP signaling controls PASMC KV channel expression in vitro and in vivo. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 290, L841-L848.	2.9	60

#	Article	IF	Citations
37	ACE2 Improves Right Ventricular Function in a Pressure Overload Model. PLoS ONE, 2011, 6, e20828.	2.5	60
38	Bone Marrow–derived Cells Contribute to the Pathogenesis of Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 898-909.	5 . 6	60
39	Molecular effects of loss of BMPR2 signaling in smooth muscle in a transgenic mouse model of PAH. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 292, L1556-L1563.	2.9	57
40	Dysfunctional BMPR2 signaling drives an abnormal endothelial requirement for glutamine in pulmonary arterial hypertension. Pulmonary Circulation, 2017, 7, 186-199.	1.7	57
41	Oestrogen inhibition reverses pulmonary arterial hypertension and associated metabolic defects. European Respiratory Journal, 2017, 50, 1602337.	6.7	55
42	Physiologic and molecular consequences of endothelial Bmpr2 mutation. Respiratory Research, 2011, 12, 84.	3.6	54
43	The Selective Angiotensin II Type 2 Receptor Agonist, Compound 21, Attenuates the Progression of Lung Fibrosis and Pulmonary Hypertension in an Experimental Model of Bleomycin-Induced Lung Injury. Frontiers in Physiology, 2018, 9, 180.	2.8	53
44	Oxidative Injury is a Common Consequence of BMPR2ÂMutations. Pulmonary Circulation, 2011, 1, 72-83.	1.7	51
45	Interaction between Bone Morphogenetic Protein Receptor Type 2 and Estrogenic Compounds in Pulmonary Arterial Hypertension. Pulmonary Circulation, 2013, 3, 564-577.	1.7	47
46	Mechanistic Phase II Clinical Trial of Metformin in Pulmonary Arterial Hypertension. Journal of the American Heart Association, 2020, 9, e018349.	3.7	44
47	DEF-3(g16/NY-LU-12), an RNA binding protein from the 3p21.3 homozygous deletion region in SCLC. Oncogene, 1999, 18, 2589-2597.	5.9	40
48	Evidence for cell fusion is absent in vascular lesions associated with pulmonary arterial hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 295, L1028-L1039.	2.9	40
49	Serotonin transporter protein in pulmonary hypertensive rats treated with atorvastatin. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 293, L630-L638.	2.9	39
50	Rho-kinase inhibition alleviates pulmonary hypertension in transgenic mice expressing a dominant-negative type II bone morphogenetic protein receptor gene. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 301, L667-L674.	2.9	39
51	Hyperoxia Synergizes with Mutant Bone Morphogenic Protein Receptor 2 to Cause Metabolic Stress, Oxidant Injury, and Pulmonary Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 778-787.	2.9	38
52	Mice deficient in galectin-1 exhibit attenuated physiological responses to chronic hypoxia-induced pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 292, L154-L164.	2.9	37
53	T <scp>ranslational</scp> A <scp>dvances</scp> <scp>in</scp> <scp>the</scp> F <scp>ield</scp> <scp> of</scp> P <scp>ulmonary</scp> H <scp>ypertension</scp> Molecular Medicine of Pulmonary Arterial Hypertension. From Population Genetics to Precision Medicine and Gene Editing. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 23-31.	5.6	32
54	Cross Talk Between Smad, MAPK, and Actin in the Etiology of Pulmonary Arterial Hypertension. Advances in Experimental Medicine and Biology, 2010, 661, 265-278.	1.6	32

#	Article	IF	CITATIONS
55	MURINE PULMONARY RESPONSE TO CHRONIC HYPOXIA IS STRAIN SPECIFIC. Experimental Lung Research, 2008, 34, 313-323.	1.2	30
56	BMP Pathway Regulation of and by Macrophages. PLoS ONE, 2014, 9, e94119.	2.5	28
57	Idiopathic and Heritable PAH Perturb Common Molecular Pathways, Correlated with Increased MSX1 Expression. Pulmonary Circulation, 2011, 1, 389-398.	1.7	27
58	Embryonic Growth-Associated Protein Is One Subunit of a Novel N-Terminal Acetyltransferase Complex Essential for Embryonic Vascular Development. Circulation Research, 2006, 98, 846-855.	4.5	26
59	Microvessel Mechanobiology in Pulmonary Arterial Hypertension. Hypertension, 2015, 65, 483-489.	2.7	25
60	Protein Microarray Analysis of Nasal Polyps from Aspirin-Sensitive and Aspirin-Tolerant Patients with Chronic Rhinosinusitis. American Journal of Rhinology and Allergy, 2009, 23, 268-272.	2.0	24
61	Rescuing the BMPR2 signaling axis in pulmonary arterial hypertension. Drug Discovery Today, 2014, 19, 1241-1245.	6.4	24
62	Endothelial-to-mesenchymal transition in lipopolysaccharide-induced acute lung injury drives a progenitor cell-like phenotype. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L1185-L1198.	2.9	24
63	Experimental and Transgenic Models of Pulmonary Hypertension. , 2011, 1, 769-82.		23
64	A Processâ€Based Review of Mouse Models of Pulmonary Hypertension. Pulmonary Circulation, 2012, 2, 415-433.	1.7	23
65	Genome Editing in Large Animals. Journal of Equine Veterinary Science, 2016, 41, 1-6.	0.9	23
66	Circulating RNA Transcripts Identify Therapeutic Response in Cystic Fibrosis Lung Disease. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 929-938.	5.6	22
67	Peroxisome Proliferatorâ€Activated Receptorâ€g Agonist Treatment Increases Septation and Angiogenesis and Decreases Airway Hyperresponsiveness in a Model of Experimental Neonatal Chronic Lung Disease. Anatomical Record, 2009, 292, 1045-1061.	1.4	22
68	BMPR2 mutation alters the lung macrophage endothelin-1 cascade in a mouse model and patients with heritable pulmonary artery hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 299, L363-L373.	2.9	21
69	Microarray studies in pulmonary arterial hypertension. International Journal of Clinical Practice, 2011, 65, 19-28.	1.7	20
70	Modification of Hemodynamic and Immune Responses to Exposure with a Weak Antigen by the Expression of a Hypomorphic BMPR2 Gene. PLoS ONE, 2013, 8, e55180.	2.5	20
71	Adverse physiologic effects of Western diet on right ventricular structure and function: role of lipid accumulation and metabolic therapy. Pulmonary Circulation, 2019, 9, 1-9.	1.7	20
72	Echocardiographic Assessment of the Right Heart in Mice. Journal of Visualized Experiments, 2013, , .	0.3	18

#	Article	IF	Citations
73	Connectivity Map Analysis of Nonsense-Mediated Decay–Positive <i>BMPR2</i> Pelated Hereditary Pulmonary Arterial Hypertension Provides Insights into Disease Penetrance. American Journal of Respiratory Cell and Molecular Biology, 2012, 47, 20-27.	2.9	16
74	Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Can Induce Apoptosis in Subsets of Premalignant Cells. American Journal of Pathology, 2004, 165, 1613-1620.	3.8	14
75	Abrogation of Anti-Inflammatory Transcription Factor LKLF in Neutrophil-Dominated Airways. American Journal of Respiratory Cell and Molecular Biology, 2008, 38, 679-688.	2.9	14
76	CD40 amplifies Fas-mediated apoptosis: a mechanism contributing to emphysema. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 303, L141-L151.	2.9	14
77	Machine learning-based microarray analyses indicate low-expression genes might collectively influence PAH disease. PLoS Computational Biology, 2019, 15, e1007264.	3.2	14
78	Inhalation of Stachybotrys chartarum Evokes Pulmonary Arterial Remodeling in Mice, Attenuated by Rho-Kinase Inhibitor. Mycopathologia, 2011, 172, 5-15.	3.1	13
79	Right Ventricular Systolic Pressure Measurements in Combination with Harvest of Lung and Immune Tissue Samples in Mice. Journal of Visualized Experiments, 2013, , e50023.	0.3	13
80	Genotypeâ€Phenotype Effects of <i>Bmpr2</i> Mutations on Disease Severity in Mouse Models of Pulmonary Hypertension. Pulmonary Circulation, 2016, 6, 597-607.	1.7	13
81	Enhanced caveolin-1 expression in smooth muscle cells: Possible prelude to neointima formation. World Journal of Cardiology, 2015, 7, 671.	1.5	13
82	Suppression of Type II Bone Morphogenic Protein Receptor in Vascular Smooth Muscle Induces Pulmonary Arterial Hypertension in Transgenic Mice. Chest, 2005, 128, 553S.	0.8	11
83	Gene expression in lungs of mice lacking the 5-hydroxytryptamine transporter gene. BMC Pulmonary Medicine, 2009, 9, 19.	2.0	11
84	The Low-Voltage-Activated Calcium Channel CAV3.1 Controls Proliferation of Human Pulmonary Artery Myocytes. Chest, 2005, 128, 581S-582S.	0.8	10
85	A bone-derived mixture of TGFÎ ² -superfamily members forms a more mature vascular network than bFGF or TGF-Î ² 2 in vivo. Angiogenesis, 2006, 8, 327-338.	7.2	10
86	The Relationship of Bone Mineral Density in Men with Chronic Obstructive Pulmonary Disease Classified According to the Global Initiative for Chronic Obstructive Lung Disease (GOLD) Combined Chronic Obstructive Pulmonary Disease (COPD) Assessment System. Internal Medicine, 2017, 56, 1781-1790.	0.7	9
87	Pulmonary Vascular Platform Models the Effects of Flow and Pressure on Endothelial Dysfunction in BMPR2 Associated Pulmonary Arterial Hypertension. International Journal of Molecular Sciences, 2018, 19, 2561.	4.1	9
88	Adverse effects of BMPR2 suppression in macrophages in animal models of pulmonary hypertension. Pulmonary Circulation, 2020, 10, 1-11.	1.7	9
89	NF-κB Activation Exacerbates, but Is not Required for Murine Bmpr2-Related Pulmonary Hypertension. Diseases (Basel, Switzerland), 2014, 2, 148-167.	2.5	5
90	Myeloid-Derived Suppressor Cells and Pulmonary Hypertension. International Journal of Molecular Sciences, 2018, 19, 2277.	4.1	5

#	Article	IF	CITATIONS
91	Upregulation of SERT and ADORA1 in broilers with acute right ventricular failure. Research in Veterinary Science, 2019, 125, 397-400.	1.9	5
92	Copy-number variation in BMPR2 is not associated with the pathogenesis of pulmonary arterial hypertension. BMC Medical Genetics, 2009, 10, 58.	2.1	4
93	Influence of pulmonary emphysema on COPD assessment test-oriented categorization in GOLD document. International Journal of COPD, 2015, 10, 1199.	2.3	3
94	JNK2 regulates vascular remodeling in pulmonary hypertension. Pulmonary Circulation, 2018, 8, 1-13.	1.7	3
95	Are Obliterative Pulmonary Vascular Lesions Reversible?. American Journal of Respiratory and Critical Care Medicine, 2011, 184, 397-398.	5.6	2
96	Macrophages are part of cause, not consequence, in PAH. FASEB Journal, 2016, 30, 774.12.	0.5	2
97	Potential Interventions Against BMPR2-Related Pulmonary Hypertension. Advances in Pulmonary Hypertension, 2012, 11, 25-32.	0.1	2
98	Pseudomonas aeruginosa-Human Airway Epithelial Cell Interaction. Chest, 2002, 121, 40S-41S.	0.8	1
99	Adenoviral gene transfer to the neonatal rat pulmonary circulation. Journal of Gene Medicine, 2004, 6, 734-739.	2.8	1
100	Effective treatments for PAH will require detailed knowledge of molecular aetiology. International Journal of Clinical Practice, 2010, 64, 3-4.	1.7	1
101	ACE2 Reverses Established Pulmonary Arterial Hypertension In BMPR2R899X Mice., 2010,,.		1
102	Olmesartan Does Not Treat Pulmonary Arterial Hypertension In BMPR2R899X Mice., 2010, , .		1
103	Chromosome 3p, gÃ"nes suppresseurs de tumeurs et gÃ"nes de sémaphorines en 3p21.3 Medecine/Sciences, 1998, 14, 283.	0.2	1
104	Impacts of caffeine on resistant chicken's performance and cardiovascular gene expression. Journal of Animal Physiology and Animal Nutrition, 2021, , .	2.2	0
105	Overexpression of Msx1 in Mouse Lung Leads to Loss of Pulmonary Vessels Following Vascular Hypoxic Injury. Cells, 2021, 10, 2306.	4.1	0
106	Inappropriate Production of Galectinâ€1 Affects Vascular Homeostasis during Pulmonary Hypertension. FASEB Journal, 2006, 20, A639.	0.5	0
107	The Adult Lung Side Population of Cells Contains Mesenchymal Endothelial Precursors which are Affected in Pulmonary Hypertension. FASEB Journal, 2006, 20, A1459.	0.5	0
108	Author's Reply. Pulmonary Circulation, 2013, 3, 447-8.	1.7	0

#	Article	lF	CITATIONS
109	ACE2 trials suggest remodeling, not dilation, as primary therapeutic effect. Pulmonary Circulation, 2022, 12, e12022.	1.7	0