Sergio Munoz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5269079/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On the use of multiaxial fatigue criteria for fretting fatigue life assessment. International Journal of Fatigue, 2008, 30, 32-44.	2.8	118
2	Temperature and stress fields evolution during spark plasma sintering processes. Journal of Materials Science, 2010, 45, 6528-6539.	1.7	81
3	On the influence of space holder in the development of porous titanium implants: Mechanical, computational and biological evaluation. Materials Characterization, 2015, 108, 68-78.	1.9	56
4	Porous Titanium for Biomedical Applications: Evaluation of the Conventional Powder Metallurgy Frontier and Space-Holder Technique. Applied Sciences (Switzerland), 2019, 9, 982.	1.3	56
5	Application of fracture mechanics to estimate fretting fatigue endurance curves. Engineering Fracture Mechanics, 2007, 74, 2168-2186.	2.0	43
6	Parametric investigation of temperature distribution in field activated sintering apparatus. International Journal of Advanced Manufacturing Technology, 2013, 65, 127-140.	1.5	40
7	Multibody model of railway vehicles with weakly coupled vertical and lateral dynamics. Mechanical Systems and Signal Processing, 2019, 115, 570-592.	4.4	40
8	Propagation in fretting fatigue from a surface defect. Tribology International, 2006, 39, 1149-1157.	3.0	36
9	Prediction of the crack extension under fretting wear loading conditions. International Journal of Fatigue, 2006, 28, 1769-1779.	2.8	32
10	Wheel-rail contact force measurement using strain gauges and distance lasers on a scaled railway vehicle. Mechanical Systems and Signal Processing, 2020, 138, 106555.	4.4	27
11	Artificial neural networks applied to the measurement of lateral wheel-rail contact force: A comparison with a harmonic cancellation method. Mechanism and Machine Theory, 2020, 153, 103968.	2.7	26
12	A Track Geometry Measuring System Based on Multibody Kinematics, Inertial Sensors and Computer Vision. Sensors, 2021, 21, 683.	2.1	16
13	Different models for simulation of mechanical behaviour of porous materials. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 80, 88-96.	1.5	15
14	Estimation of Lateral Track Irregularity Through Kalman Filtering Techniques. IEEE Access, 2021, 9, 60010-60025.	2.6	15
15	An alternative procedure to measure railroad track irregularities. Application to a scaled track. Measurement: Journal of the International Measurement Confederation, 2019, 137, 417-427.	2.5	13
16	Influence of the Compaction Pressure and Sintering Temperature on the Mechanical Properties of Porous Titanium for Biomedical Applications. Metals, 2019, 9, 1249.	1.0	12
17	Estimation of lateral track irregularity using a Kalman filter. Experimental validation. Journal of Sound and Vibration, 2021, 504, 116122.	2.1	11
18	Measurement of railroad track irregularities using an automated recording vehicle. Measurement: Journal of the International Measurement Confederation, 2021, 183, 109765.	2.5	11

Sergio Munoz

#	Article	IF	CITATIONS
19	Experimental measurement of track irregularities using a scaled track recording vehicle and Kalman filtering techniques. Mechanical Systems and Signal Processing, 2022, 169, 108625.	4.4	9
20	Application and Experimental Validation of a Multibody Model with Weakly Coupled Lateral and Vertical Dynamics to a Scaled Railway Vehicle. Sensors, 2020, 20, 3700.	2.1	8
21	Influence of the Initiation Length in Predictions of Life in Fretting Fatigue. Strain, 2011, 47, e283.	1.4	7
22	Fracture mechanics approach to fretting fatigue behaviour of coated aluminium alloy components. Journal of Strain Analysis for Engineering Design, 2014, 49, 66-75.	1.0	7
23	Analysis of crack evolution in fretting fatigue with spherical contact. Journal of Strain Analysis for Engineering Design, 2009, 44, 503-515.	1.0	6
24	Validation of multibody modeling and simulation using an instrumented bicycle: from the computer to the road. Multibody System Dynamics, 2018, 43, 297-319.	1.7	6
25	Thermal Conductivity of Powder Aggregates and Porous Compacts. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 4532-4538.	1.1	4