List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5269069/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microbial fuel cell scale-up options: Performance evaluation of membrane (c-MFC) and membrane-less (s-MFC) systems under different feeding regimes. Journal of Power Sources, 2022, 520, 230875.	7.8	30
2	Development of a Bio-Digital Interface Powered by Microbial Fuel Cells. Sustainability, 2022, 14, 1735.	3.2	3
3	The prognostic significance of serum interferon-gamma (IFN-γ) in hormonally dependent breast cancer. Cytokine, 2022, 152, 155836.	3.2	11
4	Microbial fuel cell compared to a chemostat. Chemosphere, 2022, 296, 133967.	8.2	11
5	Arginine methylation: the promise of a â€~silver bullet' for brain tumours?. Amino Acids, 2021, 53, 489-506.	2.7	16
6	Investigating oxygen transport efficiencies in precision-cut liver slice-based organ-on-a-chip devices. Microfluidics and Nanofluidics, 2021, 25, 1.	2.2	6
7	De-Palmitoylation of Tissue Factor Regulates Its Activity, Phosphorylation and Cellular Functions. Cancers, 2021, 13, 3837.	3.7	3
8	Factor VIIa Regulates the Level of Cell-Surface Tissue Factor through Separate but Cooperative Mechanisms. Cancers, 2021, 13, 3718.	3.7	0
9	Current understanding of nonsurgical interventions for refractory differentiated thyroid cancer: a systematic review. Future Science OA, 2021, 7, FSO738.	1.9	3
10	Electrosynthesis, modulation, and self-driven electroseparation in microbial fuel cells. IScience, 2021, 24, 102805.	4.1	6
11	Electronic faucet powered by low cost ceramic microbial fuel cells treating urine. Journal of Power Sources, 2021, 506, 230004.	7.8	6
12	Identification of soluble tissue‑derived biomarkers from human thyroid tissue explants maintained on a microfluidic device. Oncology Letters, 2021, 22, 780.	1.8	6
13	The significance of HOXB7 and IL17RB serum levels in prognosis of hormonally dependent breast cancer: A pilot study. Advances in Medical Sciences, 2021, 66, 359-365.	2.1	0
14	Isolation and characterisation of graves' disease-specific extracellular vesicles from tissue maintained on a bespoke microfluidic device. Organs-on-a-Chip, 2021, 3, 100011.	3.2	4
15	Accumulation of tissue factor in endothelial cells promotes cellular apoptosis through over-activation of Src1 and involves β1-integrin signalling. Apoptosis: an International Journal on Programmed Cell Death, 2020, 25, 29-41.	4.9	9
16	Microbial fuel cells directly powering a microcomputer. Journal of Power Sources, 2020, 446, 227328.	7.8	53
17	Development of a Microfluidic Culture Paradigm for Ex Vivo Maintenance of Human Glioblastoma Tissue: A New Glioblastoma Model?. Translational Oncology, 2020, 13, 1-10.	3.7	28
18	Scaling up self-stratifying supercapacitive microbial fuel cell. International Journal of Hydrogen Energy, 2020, 45, 25240-25248.	7.1	12

#	Article	IF	CITATIONS
19	The Changing Face of in vitro Culture Models for Thyroid Cancer Research: A Systematic Literature Review. Frontiers in Surgery, 2020, 7, 43.	1.4	8
20	Developing 3D-Printable Cathode Electrode for Monolithically Printed Microbial Fuel Cells (MFCs). Molecules, 2020, 25, 3635.	3.8	17
21	Doxorubicin Enhances Procoagulant Activity of Endothelial Cells after Exposure to Tumour Microparticles on Microfluidic Devices. Hemato, 2020, 1, 23-34.	0.6	Ο
22	Activation of PAR2 by tissue factor induces the release of the PTEN from MAGI proteins and regulates PTEN and Akt activities. Scientific Reports, 2020, 10, 20908.	3.3	8
23	Impact of Inoculum Type on the Microbial Community and Power Performance of Urine-Fed Microbial Fuel Cells. Microorganisms, 2020, 8, 1921.	3.6	18
24	Microbial Fuel Cell stack performance enhancement through carbon veil anode modification with activated carbon powder. Applied Energy, 2020, 262, 114475.	10.1	54
25	The influence of lack of reference conditions on dosimetry in pre-clinical radiotherapy with medium energy x-ray beams. Physics in Medicine and Biology, 2020, 65, 085016.	3.0	9
26	Discovery, development and exploitation of steady-state biofilms. Journal of Breath Research, 2020, 14, 044001.	3.0	4
27	Self-stratifying microbial fuel cell: The importance of the cathode electrode immersion height. International Journal of Hydrogen Energy, 2019, 44, 4524-4532.	7.1	40
28	Microbial fuel cells (MFC) and microalgae; photo microbial fuel cell (PMFC) as complete recycling machines. Sustainable Energy and Fuels, 2019, 3, 2546-2560.	4.9	44
29	Artificial neural network simulating microbial fuel cells with different membrane materials and electrode configurations. Journal of Power Sources, 2019, 436, 226832.	7.8	41
30	Scalability of self-stratifying microbial fuel cell: Towards height miniaturisation. Bioelectrochemistry, 2019, 127, 68-75.	4.6	22
31	A profile of arginine methyltransferase receptors in two immortal glioblastoma cell lines: the precursor to a novel target?. Neuro-Oncology, 2019, 21, iv18-iv19.	1.2	0
32	Towards monolithically printed Mfcs: Development of a 3d-printable membrane electrode assembly (mea). International Journal of Hydrogen Energy, 2019, 44, 4450-4462.	7.1	19
33	Effect of the ceramic membrane properties on the microbial fuel cell power output and catholyte generation. Journal of Power Sources, 2019, 429, 30-37.	7.8	27
34	The Ratio of Factor VIIa:Tissue Factor Content within Microvesicles Determines the Differential Influence on Endothelial Cells. TH Open, 2019, 03, e132-e145.	1.4	8
35	Development of an anatomically correct mouse phantom for dosimetry measurement in small animal radiotherapy research. Physics in Medicine and Biology, 2019, 64, 12NT02.	3.0	18
36	Low molecular weight heparin and direct oral anticoagulants influence tumour formation, growth, invasion and vascularisation by separate mechanisms. Scientific Reports, 2019, 9, 6272.	3.3	12

#	Article	IF	CITATIONS
37	A patient tumour-on-a-chip system for personalised investigation of radiotherapy based treatment regimens. Scientific Reports, 2019, 9, 6327.	3.3	28
38	A novel microfluidic device capable of maintaining functional thyroid carcinoma specimens ex vivo provides a new drug screening platform. BMC Cancer, 2019, 19, 259.	2.6	32
39	A Comprehensive Study of Custom-Made Ceramic Separators for Microbial Fuel Cells: Towards "Living―Bricks. Energies, 2019, 12, 4071.	3.1	23
40	Procoagulant tumor microvesicles attach to endothelial cells on biochips under microfluidic flow. Biomicrofluidics, 2019, 13, 064124.	2.4	8
41	Increased power generation in supercapacitive microbial fuel cell stack using Fe N C cathode catalyst. Journal of Power Sources, 2019, 412, 416-424.	7.8	42
42	Innovative organotypic in vitro models for safety assessment: aligning with regulatory requirements and understanding models of the heart, skin, and liver as paradigms. Archives of Toxicology, 2018, 92, 557-569.	4.2	35
43	WSB-1 regulates the metastatic potential of hormone receptor negative breast cancer. British Journal of Cancer, 2018, 118, 1229-1237.	6.4	19
44	Peptidyl-prolyl isomerase 1 (Pin1) preserves the phosphorylation state of tissue factor and prolongs its release within microvesicles. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 12-24.	4.1	13
45	Novel Analytical Microbial Fuel Cell Design for Rapid in Situ Optimisation of Dilution Rate and Substrate Supply Rate, by Flow, Volume Control and Anode Placement. Energies, 2018, 11, 2377.	3.1	17
46	Inhibiting Arginine Methylation as a Tool to Investigate Cross-Talk with Methylation and Acetylation Post-Translational Modifications in a Glioblastoma Cell Line. Proteomes, 2018, 6, 44.	3.5	8
47	PEE POWER® urinal II – Urinal scale-up with microbial fuel cell scale-down for improved lighting. Journal of Power Sources, 2018, 392, 150-158.	7.8	106
48	Dynamic evolution of anodic biofilm when maturing under different external resistive loads in microbial fuel cells. Electrochemical perspective. Journal of Power Sources, 2018, 400, 392-401.	7.8	58
49	Allometric scaling of microbial fuel cells and stacks: The lifeform case for scale-up. Journal of Power Sources, 2017, 356, 365-370.	7.8	55
50	Maintenance of head and neck tumor on-chip: gateway to personalized treatment?. Future Science OA, 2017, 3, FSO174.	1.9	28
51	The Role of Chemokines in Thyroid Carcinoma. Thyroid, 2017, 27, 1347-1359.	4.5	37
52	Do sodium channel proteolytic fragments regulate sodium channel expression?. Channels, 2017, 11, 476-481.	2.8	4
53	Amino acid based gallium-68 chelators capable of radiolabeling at neutral pH. Dalton Transactions, 2017, 46, 16973-16982.	3.3	11
54	Looking to the future of organs-on-chip. Future Science OA, 2017, 3, FSO205.	1.9	6

#	Article	IF	CITATIONS
55	Measuring the response of human head and neck squamous cell carcinoma to irradiation in a microfluidic model allowing customized therapy. International Journal of Oncology, 2017, 51, 1227-1238.	3.3	24
56	A microfluidic chip based model for the study of full thickness human intestinal tissue using dual flow. Biomicrofluidics, 2016, 10, 064101.	2.4	47
57	Oligoubiquitination of tissue factor on Lys255 promotes Ser253-dephosphorylation and terminates TF release. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2846-2857.	4.1	7
58	Current advances in ligand design for inorganic positron emission tomography tracers ⁶⁸ Ga, ⁶⁴ Cu, ⁸⁹ Zr and ⁴⁴ Sc. Dalton Transactions, 2016, 45, 15702-15724.	3.3	81
59	Analysis of Radiationâ€Induced Cell Death in Head and Neck Squamous Cell Carcinoma and Rat Liver Maintained in Microfluidic Devices. Otolaryngology - Head and Neck Surgery, 2014, 150, 73-80.	1.9	28
60	Effect of resection of localized pancreaticobiliary adenocarcinoma on angiogenic markers and tissue factor related pro-thrombotic and pro-angiogenic activity. Thrombosis Research, 2014, 134, 479-487.	1.7	6
61	Application of microfluidic systems in management of head and neck squamous cell carcinoma. Head and Neck, 2013, 35, 756-763.	2.0	6
62	Increased prevalence of tumour infiltrating immune cells in oropharyngeal tumours in comparison to other subsites: relationship to peripheral immunity. Cancer Immunology, Immunotherapy, 2013, 62, 863-873.	4.2	30
63	Tumour and microparticle tissue factor expression and cancer thrombosis. Thrombosis Research, 2013, 131, 109-115.	1.7	43
64	Integrated RNA extraction and RT-PCR for semi-quantitative gene expression studies on a microfluidic device. Laboratory Investigation, 2013, 93, 961-966.	3.7	16
65	Markers of cell division cycle in glioblastoma: significance in prediction of treatment response and patient prognosis. British Journal of Neurosurgery, 2013, 27, 752-758.	0.8	0
66	Increased frequency and suppressive activity of CD127low/-Tregs in the peripheral circulation of patients with head and neck squamous cell carcinoma are associated with advanced stage and nodal involvement. Immunology, 2013, 140, n/a-n/a.	4.4	41
67	Development of Microfluidic-based Analytical Methodology for Studying the Effects of Chemotherapy Agents on Cancer Tissue. Current Analytical Chemistry, 2013, 9, 2-8.	1.2	15
68	Clinical utility of anti- <i>p53</i> auto-antibody: Systematic review and focus on colorectal cancer. World Journal of Gastroenterology, 2013, 19, 4651.	3.3	50
69	Duramycin exhibits antiproliferative properties and induces apoptosis in tumour cells. Blood Coagulation and Fibrinolysis, 2012, 23, 396-401.	1.0	20
70	Direct processing of clinically relevant large volume samples for the detection of sexually transmitted infectious agents from urine on a microfluidic device. Analytical Methods, 2012, 4, 2141.	2.7	3
71	Effect of treatment on systemic cytokines in head and neck squamous cell carcinoma patients. Results in Immunology, 2012, 2, 1-6.	2.2	8
72	Development of Microfluidic-based Analytical Methodology for Studying the Effects of Chemotherapy Agents on Cancer Tissue. Current Analytical Chemistry, 2012, 9, 2-8.	1.2	5

#	Article	IF	CITATIONS
73	Evaluation of heart tissue viability under redoxâ€magnetohydrodynamics conditions: Toward fineâ€tuning flow in biological microfluidics applications. Biotechnology and Bioengineering, 2012, 109, 1827-1834.	3.3	8
74	A Microfluidic System for Testing the Responses of Head and Neck Squamous Cell Carcinoma Tissue Biopsies to Treatment with Chemotherapy Drugs. Annals of Biomedical Engineering, 2012, 40, 1277-1288.	2.5	34
75	Voltammetric Immunoassay for the Detection of Protein Biomarkers. Electroanalysis, 2012, 24, 264-272.	2.9	20
76	Serum IL10 and circulating CD4 ⁺ CD25 ^{high} regulatory T cell numbers as predictors of clinical outcome and survival in patients with head and neck squamous cell carcinoma. Head and Neck, 2011, 33, 415-423.	2.0	40
77	Pancreatic cancer cell and microparticle procoagulant surface characterization. Blood Coagulation and Fibrinolysis, 2011, 22, 680-687.	1.0	36
78	Study of ethanol induced toxicity in liver explants using microfluidic devices. Biomedical Microdevices, 2011, 13, 1005-1014.	2.8	28
79	Onâ€chip integrated labelling, transport and detection of tumour cells. Electrophoresis, 2011, 32, 3188-3195.	2.4	5
80	The Hemostasis Apparatus in Pancreatic Cancer and Its Importance beyond Thrombosis. Cancers, 2011, 3, 267-284.	3.7	4
81	Weight-adjusted dalteparin for prevention of vascular thromboembolism in advanced pancreatic cancer patients decreases serum tissue factor and serum-mediated induction of cancer cell invasion. Blood Coagulation and Fibrinolysis, 2010, 21, 452-458.	1.0	22
82	Microfluidic perfusion system for maintaining viable heart tissue with real-time electrochemical monitoring of reactive oxygen species. Lab on A Chip, 2010, 10, 2720.	6.0	55
83	A microfluidic device for tissue biopsy culture and interrogation. Analytical Methods, 2010, 2, 1005.	2.7	29
84	Preoperative serum levels of serum VEGF-C is associated with distant metastasis in colorectal cancer patients. International Journal of Colorectal Disease, 2009, 24, 269-274.	2.2	19
85	Head and neck tumour immunology: basic concepts and new clinical implications. Journal of Laryngology and Otology, 2009, 123, 9-18.	0.8	2
86	Anti-p53 autoantibody in colorectal cancer: prognostic significance in long-term follow-up. International Journal of Colorectal Disease, 2008, 23, 595-600.	2.2	31
87	Vascular endothelial growth factor and psychosocial factors in colorectal cancer. Psycho-Oncology, 2008, 17, 66-73.	2.3	27
88	Regulatory T cells: What role do they play in antitumor immunity in patients with head and neck cancer?. Head and Neck, 2008, 30, 251-261.	2.0	49
89	Development of a microfluidic device for the maintenance and interrogation of viable tissue biopsies. Lab on A Chip, 2008, 8, 1842.	6.0	60
90	Investigation of interleukin 10, 12 and 18 levels in patients with head and neck cancer. Journal of Laryngology and Otology, 2007, 121, 246-252.	0.8	65

#	Article	IF	CITATIONS
91	Unraveling the Chromosomal Aberrations of Head and Neck Squamous Cell Carcinoma: A Review. Annals of Surgical Oncology, 2005, 12, 831-842.	1.5	27
92	Dendritic cells and HNSCC: a potential treatment option? (Review). Oncology Reports, 2005, 13, 3-10.	2.6	23
93	Can a genetic signature for metastatic head and neck squamous cell carcinoma be characterised by comparative genomic hybridisation?. British Journal of Cancer, 2004, 90, 1976-1982.	6.4	15
94	Prognostic value of genomic alterations in head and neck squamous cell carcinoma detected by comparative genomic hybridisation. British Journal of Cancer, 2003, 89, 864-869.	6.4	56
95	Soluble Tie-2 receptor levels independently predict locoregional recurrence in head and neck squamous cell carcinoma. Head and Neck, 2002, 24, 773-778.	2.0	9
96	The role of CD8+ T cells in immune responses to colorectal cancer. Cancer Immunology, Immunotherapy, 2002, 51, 235-247.	4.2	53
97	Genetic changes in breast cancer detected by comparative genomic hybridisation. International Journal of Cancer, 2000, 86, 494-500.	5.1	69
98	Pre-operative serum vascular endothelial growth factor can select patients for adjuvant treatment after curative resection in colorectal cancer. British Journal of Cancer, 2000, 83, 1425-1431.	6.4	71
99	Genetic changes in breast cancer detected by comparative genomic hybridisation. , 2000, 86, 494.		1
100	Genetic Analysis of Head and Neck Squamous Cell Carcinoma and Surrounding Mucosa. JAMA Otolaryngology, 1999, 125, 1341.	1.2	22
101	Serum vascular endothelial growth factor in patients with head and neck squamous cell carcinoma. Clinical Otolaryngology, 1999, 24, 426-430.	0.0	21
102	The role of monocytes and natural killer cells in mediating antibody-dependent lysis of colorectal tumour cells. Cancer Immunology, Immunotherapy, 1999, 48, 517-524.	4.2	30
103	Genetic changes associated with telomerase activity in breast cancer. , 1999, 84, 516-520.		28
104	Multiple cell populations in colorectal carcinomas: analysis by 3-colour fluorescence in situ hybridization International Journal of Oncology, 1998, 12, 75-80.	3.3	0
105	Advanced colorectal cancer is associated with impaired interleukin 12 and enhanced interleukin 10 production. Clinical Cancer Research, 1998, 4, 1943-8.	7.0	75