Jonna Frasor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5268870/publications.pdf

Version: 2024-02-01

361413 361022 1,301 39 20 35 h-index citations g-index papers 39 39 39 2239 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Minireview: Inflammation: An Instigator of More Aggressive Estrogen Receptor (ER) Positive Breast Cancers. Molecular Endocrinology, 2012, 26, 360-371.	3.7	149
2	Positive Cross-Talk between Estrogen Receptor and NF-κB in Breast Cancer. Cancer Research, 2009, 69, 8918-8925.	0.9	131
3	Dimethyl Fumarate Inhibits the Nuclear Factor ÎB Pathway in Breast Cancer Cells by Covalent Modification of p65 Protein. Journal of Biological Chemistry, 2016, 291, 3639-3647.	3.4	107
4	Structural and Molecular Mechanisms of Cytokine-Mediated Endocrine Resistance in Human Breast Cancer Cells. Molecular Cell, 2017, 65, 1122-1135.e5.	9.7	99
5	Prolactin regulation of estrogen receptor expression. Trends in Endocrinology and Metabolism, 2003, 14, 118-123.	7.1	97
6	Proinflammatory Cytokines Enhance Estrogen-dependent Expression of the Multidrug Transporter Gene ABCG2 through Estrogen Receptor and NFήB Cooperativity at Adjacent Response Elements. Journal of Biological Chemistry, 2010, 285, 31100-31106.	3.4	86
7	Synergistic Up-Regulation of Prostaglandin E Synthase Expression in Breast Cancer Cells by 17β-Estradiol and Proinflammatory Cytokines. Endocrinology, 2008, 149, 6272-6279.	2.8	61
8	Full antagonism of the estrogen receptor without a prototypical ligand side chain. Nature Chemical Biology, 2017, 13, 111-118.	8.0	48
9	NFκB affects estrogen receptor expression and activity in breast cancer through multiple mechanisms. Molecular and Cellular Endocrinology, 2015, 418, 235-239.	3.2	46
10	A Protective Role for Triacylglycerols during Apoptosis. Biochemistry, 2018, 57, 72-80.	2.5	43
11	Intestinal estrogen receptor beta suppresses colon inflammation and tumorigenesis in both sexes. Cancer Letters, 2020, 492, 54-62.	7.2	42
12	CBP Mediates NF-κB-Dependent Histone Acetylation and Estrogen Receptor Recruitment to an Estrogen Response Element in the ⟨i⟩BIRC3⟨ i⟩ Promoter. Molecular and Cellular Biology, 2012, 32, 569-575.	2.3	40
13	Fatostatin induces pro- and anti-apoptotic lipid accumulation in breast cancer. Oncogenesis, 2018, 7, 66.	4.9	40
14	Racial disparity in survival from estrogen and progesterone receptor-positive breast cancer: implications for reducing breast cancer mortality disparities. Breast Cancer Research and Treatment, 2017, 163, 321-330.	2.5	34
15	Coactivation of Estrogen Receptor and IKK \hat{I}^2 Induces a Dormant Metastatic Phenotype in ER-Positive Breast Cancer. Cancer Research, 2018, 78, 974-984.	0.9	34
16	The NF-κB Pathway Promotes Tamoxifen Tolerance and Disease Recurrence in Estrogen Receptor–Positive Breast Cancers. Molecular Cancer Research, 2020, 18, 1018-1027.	3.4	31
17	Estrogen Promotes Breast Cancer Cell Survival in an Inhibitor of Apoptosis (IAP)-dependent Manner. Hormones and Cancer, 2010, 1, 127-135.	4.9	28
18	A Cell-Permeable Stapled Peptide Inhibitor of the Estrogen Receptor/Coactivator Interaction. ACS Chemical Biology, 2018, 13, 676-684.	3.4	28

#	Article	IF	Citations
19	Divergent JNK Phosphorylation of HDAC3 in Triple-Negative Breast Cancer Cells Determines HDAC Inhibitor Binding and Selectivity. Cell Chemical Biology, 2017, 24, 1356-1367.e8.	5.2	27
20	A novel aspirin prodrug inhibits NFÎ $^{\circ}$ B activity and breast cancer stem cell properties. BMC Cancer, 2015, 15, 845.	2.6	21
21	Removal of Serum Lipids and Lipidâ€Derived Metabolites to Investigate Breast Cancer Cell Biology. Proteomics, 2019, 19, e1800370.	2.2	17
22	Correlative Analysis of miRNA Expression and Oncotype Dx Recurrence Score in Estrogen Receptor Positive Breast Carcinomas. PLoS ONE, 2015, 10, e0145346.	2.5	16
23	Update on the Role of NFκB in Promoting Aggressive Phenotypes of Estrogen Receptor–Positive Breast Cancer. Endocrinology, 2020, 161, .	2.8	11
24	Design, Synthesis, Molecular Modeling, and Biological Evaluation of Novel Amineâ€based Histone Deacetylase Inhibitors. ChemMedChem, 2017, 12, 2030-2043.	3.2	9
25	Cytoplasmic ERα and NFκB Promote Cell Survival in Mouse Mammary Cancer Cell Lines. Hormones and Cancer, 2020, 11, 76-86.	4.9	8
26	Using Tumor Explants for Imaging Mass Spectrometry Visualization of Unlabeled Peptides and Small Molecules. ACS Medicinal Chemistry Letters, 2018, 9, 768-772.	2.8	7
27	A Novel Strategy to Co-target Estrogen Receptor and Nuclear Factor κB Pathways with Hybrid Drugs for Breast Cancer Therapy. Hormones and Cancer, 2017, 8, 135-142.	4.9	6
28	Structurally Diverse Histone Deacetylase Photoreactive Probes: Design, Synthesis, and Photolabeling Studies in Live Cells and Tissue. ChemMedChem, 2019, 14, 1096-1107.	3.2	6
29	Selective pressure of endocrine therapy activates the integrated stress response through NFκB signaling in a subpopulation of ER positive breast cancer cells. Breast Cancer Research, 2022, 24, 19.	5.0	6
30	Synthesis and Characterization of an Aspirin-fumarate Prodrug that Inhibits NFκB Activity and Breast Cancer Stem Cells. Journal of Visualized Experiments, 2017, , .	0.3	5
31	Histone deacetylase inhibitor-based chromatin precipitation for identification of targeted genomic loci. Journal of Biological Methods, 2018, 5, e88.	0.6	4
32	Endocrine Therapy-Resistant Breast Cancer Cells Are More Sensitive to Ceramide Kinase Inhibition and Elevated Ceramide Levels Than Therapy-Sensitive Breast Cancer Cells. Cancers, 2022, 14, 2380.	3.7	4
33	BindSDb: A binding-information spatial database. , 2010, , .		3
34	Scaffold dependent histone deacetylase (HDAC) inhibitor induced re-equilibration of the subcellular localization and post-translational modification state of class I HDACs. PLoS ONE, 2017, 12, e0186620.	2.5	3
35	Ceramide-1-Phosphate Is Involved in Therapy-Induced Senescence. ACS Chemical Biology, 2022, 17, 822-828.	3.4	2
36	Knockout of the PHLDA1 gene in breast cancer cells reveals multiple roles for PHLDA1 in cancer phenotypes. FASEB Journal, 2017, 31, 178.8.	0.5	1

#	Article	IF	CITATIONS
37	Estrogen Receptor-Regulated Gene Signatures in Invasive Breast Cancer Cells and Aggressive Breast Tumors. Cancers, 2022, 14, 2848.	3.7	1
38	Editorial for Special Issue on "Alternative nuclear receptor ligands― Molecular and Cellular Endocrinology, 2019, 493, 110479.	3.2	0
39	Abstract P5-11-01: Identification of novel ER and ER-NFκB driven stem-like cell populations in ER+ breast cancer. Cancer Research, 2022, 82, P5-11-01-P5-11-01.	0.9	O