Richard J Schmidt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5268863/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Echo intensity is weakly associated with muscular strength and endurance in young, healthy adults. Research in Sports Medicine, 2022, 30, 371-382.	1.3	5
2	Coactivation does not contribute to fatigue-induced decreases in torque during reciprocal, isokinetic muscle actions. Isokinetics and Exercise Science, 2022, , 1-14.	0.4	2
3	Velocity-Specific Coactivation and Neuromuscular Responses to Fatiguing, Reciprocal, Isokinetic, Forearm Flexion, and Extension Muscle Actions. Journal of Strength and Conditioning Research, 2022, 36, 649-660.	2.1	5
4	Patterns of responses and time-course of changes in muscle size and strength during low-load blood flow restriction resistance training in women. European Journal of Applied Physiology, 2021, 121, 1473-1485.	2.5	6
5	Comparisons of muscle strength, size, and voluntary activation in pre- and post-pubescent males and females. European Journal of Applied Physiology, 2021, 121, 2487-2497.	2.5	7
6	Men Exhibit Greater Pain Pressure Thresholds and Times to Task Failure but Not Performance Fatigability Following Self-Paced Exercise. Perceptual and Motor Skills, 2021, 128, 2326-2345.	1.3	5
7	Acute changes in muscle thickness, edema, and blood flow are not different between lowâ€load blood flow restriction and nonâ€blood flow restriction. Clinical Physiology and Functional Imaging, 2021, 41, 452-460.	1.2	3
8	Sex differences in muscle excitation and oxygenation, but not in force fluctuations or active hyperemia resulting from a fatiguing, bilateral isometric task. Physiological Measurement, 2021, 42, 115004.	2.1	8
9	Low-load blood flow restriction elicits greater concentric strength than non-blood flow restriction resistance training but similar isometric strength and muscle size. European Journal of Applied Physiology, 2020, 120, 425-441.	2.5	18
10	Sex-Related Differences in Performance Fatigability Independent of Blood Flow Following a Sustained Muscle Action at a Low Perceptual Intensity. Journal of Science in Sport and Exercise, 2020, 2, 173-182.	1.0	4
11	Neuromuscular responses of the superficial quadriceps femoris muscles: muscle specific fatigue and inter-individual variability during severe intensity treadmill running. Journal of Musculoskeletal Neuronal Interactions, 2020, 20, 77-87.	0.1	1
12	Variable resistance training versus traditional weight training on the reflex pathway following four weeks of leg press training. Somatosensory & Motor Research, 2019, 36, 223-229.	0.9	4
13	Eccentric and concentric blood flow restriction resistance training on indices of delayed onset muscle soreness in untrained women. European Journal of Applied Physiology, 2019, 119, 2363-2373.	2.5	10
14	Self-Regulated Force and Neuromuscular Responses During Fatiguing Isometric Leg Extensions Anchored to a Rating of Perceived Exertion. Applied Psychophysiology Biofeedback, 2019, 44, 343-350.	1.7	10
15	The effects of Shilajit supplementation on fatigue-induced decreases in muscular strength and serum hydroxyproline levels. Journal of the International Society of Sports Nutrition, 2019, 16, 3.	3.9	6
16	Are There Sex-Specific Neuromuscular or Force Responses to Fatiguing Isometric Muscle Actions Anchored to a High Perceptual Intensity?. Journal of Strength and Conditioning Research, 2019, Publish Ahead of Print, .	2.1	10
17	Time course of changes in neuromuscular responses during rides to exhaustion above and below critical power. Journal of Musculoskeletal Neuronal Interactions, 2019, 19, 266-275.	0.1	1
18	Velocity-Dependent Changes in Electrical Efficiency of the Leg Extensors during Eccentric Isokinetic Muscle Actions. International Journal of Sports Medicine, 2018, 39, 264-269.	1.7	0

RICHARD J SCHMIDT

#	Article	IF	CITATIONS
19	Effects of intensity on muscle-specific voluntary electromechanical delay and relaxation electromechanical delay. Journal of Sports Sciences, 2018, 36, 1196-1203.	2.0	10
20	Co-Activation, Estimated Anterior and Posterior Cruciate Ligament Forces, and Motor Unit Activation Strategies during the Time Course of Fatigue. Sports, 2018, 6, 104.	1.7	8
21	Sex- and Mode-specific Responses to Eccentric Muscle Fatigue. International Journal of Sports Medicine, 2018, 39, 893-901.	1.7	2
22	Neuromuscular responses of recreationally active women during a sustained, submaximal isometric leg extension muscle action at a constant perception of effort. European Journal of Applied Physiology, 2018, 118, 2499-2508.	2.5	12
23	The contributions of arterial cross-sectional area and time-averaged flow velocity to arterial blood flow. Journal of Medical Ultrasound, 2018, 26, 186.	0.4	4
24	Sex differences for fatigue-induced changes in muscle blood flow, but not eccentric peak torque or neuromuscular responses. Journal of Musculoskeletal Neuronal Interactions, 2018, 18, 427-437.	0.1	4
25	A Model for Identifying Intensity Zones Above Critical Velocity. Journal of Strength and Conditioning Research, 2017, 31, 3260-3265.	2.1	17
26	Influences of Interelectrode Distance and Innervation Zone on Electromyographic Signals. International Journal of Sports Medicine, 2017, 38, 111-117.	1.7	3
27	Changes in electromechanical delay during fatiguing dynamic muscle actions. Muscle and Nerve, 2017, 56, 315-320.	2.2	8
28	Effects of Fatigue on Voluntary Electromechanical and Relaxation Electromechanical Delay. International Journal of Sports Medicine, 2017, 38, 763-769.	1.7	2
29	Time Course of Changes in Neuromuscular Responses at 30% versus 70% 1 Repetition Maximum during Dynamic Constant External Resistance Leg Extensions to Failure. International Journal of Exercise Science, 2017, 10, 365-378.	0.5	5
30	The Effects of Work-to-Rest Ratios on Torque, Electromyographic, and Mechanomyographic Responses to Fatiguing Workbouts. International Journal of Exercise Science, 2017, 10, 580-591.	0.5	0
31	Muscle- and Mode-Specific Responses of the Forearm Flexors to Fatiguing, Concentric Muscle Actions. Sports, 2016, 4, 47.	1.7	11
32	Effects of Velocity on Electromyographic, Mechanomyographic, and Torque Responses to Repeated Eccentric Muscle Actions. Journal of Strength and Conditioning Research, 2016, 30, 1743-1751.	2.1	13
33	Combining regression and mean comparisons to identify the time course of changes in neuromuscular responses during the process of fatigue. Physiological Measurement, 2016, 37, 1993-2002.	2.1	16
34	The effects of velocity on peak torque and neuromuscular responses during eccentric muscle actions. Isokinetics and Exercise Science, 2016, 24, 1-6.	0.4	2
35	Inter-individual variability in the patterns of responses for electromyography and mechanomyography during cycle ergometry using an RPE-clamp model. European Journal of Applied Physiology, 2016, 116, 1639-1649.	2.5	13
36	Basic reporting and interpretation of surface EMG amplitude and mean power frequency: a reply to Vitgotsky, Ogborn, and Phillips. European Journal of Applied Physiology, 2016, 116, 659-661.	2.5	4

RICHARD J SCHMIDT

#	Article	IF	CITATIONS
37	Electromyographic, mechanomyographic, and metabolic responses during cycle ergometry at a constant rating of perceived exertion. Applied Physiology, Nutrition and Metabolism, 2015, 40, 1178-1185.	1.9	11
38	Individual Responses for Muscle Activation, Repetitions, and Volume during Three Sets to Failure of High- (80% 1RM) versus Low-Load (30% 1RM) Forearm Flexion Resistance Exercise. Sports, 2015, 3, 269-280.	1.7	4
39	Factors underlying the perception of effort during constant heart rate running above and below the critical heart rate. European Journal of Applied Physiology, 2015, 115, 2231-2241.	2.5	11
40	Muscle activation during three sets to failure at 80 vs. 30Â% 1RM resistance exercise. European Journal of Applied Physiology, 2015, 115, 2335-2347.	2.5	91
41	The effects of gender and very short-term resistance training on peak torque, average power and neuromuscular responses of the forearm flexors. Isokinetics and Exercise Science, 2014, 22, 123-130.	0.4	2
42	Effects of anatabine and unilateral maximal eccentric isokinetic muscle actions on serum markers of muscle damage and inflammation. European Journal of Pharmacology, 2014, 728, 161-166.	3.5	5
43	Mechanomyographic and Electromyographic Responses During Fatiguing Eccentric Muscle Actions of the Leg Extensors. Journal of Applied Biomechanics, 2014, 30, 255-261.	0.8	15
44	Electromyographic and mechanomyographic responses across repeated maximal isometric and concentric muscle actions of the leg extensors. Journal of Electromyography and Kinesiology, 2013, 23, 342-348.	1.7	32
45	The effects of anatabine on non-invasive indicators of muscle damage: a randomized, double-blind, placebo-controlled, crossover study. Journal of the International Society of Sports Nutrition, 2013, 10, 33.	3.9	7
46	Plasma Ammonia Concentrations and the Slow Component of Oxygen Uptake Kinetics During Cycle Ergometry. Journal of Strength and Conditioning Research, 2008, 22, 2018-2026.	2.1	12
47	Telemetered Heart Rates Recorded during Karate Katas: A Case Study. Research Quarterly American Association for Health Physical Education and Recreation, 1973, 44, 501-505.	0.0	2