
David Thorne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5268627/publications.pdf Version: 2024-02-01

Πλυίο Τμορνε

#	Article	IF	CITATIONS
1	The role of oxidative stress in the biological responses of lung epithelial cells to cigarette smoke. Biomarkers, 2009, 14, 90-96.	1.9	144
2	A review of in vitro cigarette smoke exposure systems. Experimental and Toxicologic Pathology, 2013, 65, 1183-1193.	2.1	140
3	Development of an in vitro cytotoxicity model for aerosol exposure using 3D reconstructed human airway tissue; application for assessment of e-cigarette aerosol. Toxicology in Vitro, 2015, 29, 1952-1962.	2.4	119
4	Cigarette smoke total particulate matter increases mucous secreting cell numbers in vitro: A potential model of goblet cell hyperplasia. Toxicology in Vitro, 2010, 24, 981-987.	2.4	95
5	Measurement of oxidative DNA damage induced by mainstream cigarette smoke in cultured NCI-H292 human pulmonary carcinoma cells. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2009, 673, 3-8.	1.7	57
6	The mutagenic assessment of an electronic-cigarette and reference cigarette smoke using the Ames assay in strains TA98 and TA100. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2016, 812, 29-38.	1.7	54
7	Reduced biological effect of e-cigarette aerosol compared to cigarette smoke evaluated in vitro using normalized nicotine dose and RNA-seq-based toxicogenomics. Scientific Reports, 2017, 7, 888.	3.3	52
8	Assessment of novel tobacco heating product THP1.0. Part 7: Comparative inÂvitro toxicological evaluation. Regulatory Toxicology and Pharmacology, 2018, 93, 71-83.	2.7	52
9	Characterisation of a Vitrocell® VC 10 in vitrosmoke exposure system using dose tools and biological analysis. Chemistry Central Journal, 2013, 7, 146.	2.6	47
10	An inter-machine comparison of tobacco smoke particle deposition in vitro from six independent smoke exposure systems. Toxicology in Vitro, 2014, 28, 1320-1328.	2.4	47
11	Assessment of tobacco heating product THP1.0. Part 5: InÂvitro dosimetric and cytotoxic assessment. Regulatory Toxicology and Pharmacology, 2018, 93, 52-61.	2.7	45
12	Assessment of cigarette smoke particle deposition within the Vitrocell® exposure module using quartz crystal microbalances. Chemistry Central Journal, 2013, 7, 50.	2.6	41
13	The comparative in vitro assessment of e-cigarette and cigarette smoke aerosols using the γH2AX assay and applied dose measurements. Toxicology Letters, 2017, 265, 170-178.	0.8	40
14	Assessment of novel tobacco heating product THP1.0. Part 6: A comparative inÂvitro study using contemporary screening approaches. Regulatory Toxicology and Pharmacology, 2018, 93, 62-70.	2.7	40
15	The mutagenic assessment of mainstream cigarette smoke using the Ames assay: A multi-strain approach. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2015, 782, 9-17.	1.7	34
16	An approach to testing undiluted e-cigarette aerosol in vitro using 3D reconstituted human airway epithelium. Toxicology in Vitro, 2019, 54, 391-401.	2.4	33
17	Application of dosimetry tools for the assessment of e-cigarette aerosol and cigarette smoke generated on two different in vitro exposure systems. Chemistry Central Journal, 2016, 10, .	2.6	31
18	Nicotine Quantification <i>In Vitro</i> : A Consistent Dosimetry Marker for e-Cigarette Aerosol and Cigarette Smoke Generation. Applied in Vitro Toxicology, 2017, 3, 14-27.	1.1	31

DAVID THORNE

#	Article	IF	CITATIONS
19	A novel hybrid tobacco product that delivers a tobacco flavour note with vapour aerosol (Part 2): In vitro biological assessment and comparison with different tobacco-heating products. Food and Chemical Toxicology, 2017, 106, 533-546.	3.6	31
20	Genotoxicity evaluation of tobacco and nicotine delivery products: Part Two. In vitro micronucleus assay. Food and Chemical Toxicology, 2019, 132, 110546.	3.6	31
21	A method for assessment of the genotoxicity of mainstream cigarette-smoke by use of the bacterial reverse-mutation assay and an aerosol-based exposure system. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2014, 769, 20-28.	1.7	29
22	Characterisation of the borgwaldt LM4E system for in vitro exposures to undiluted aerosols from next generation tobacco and nicotine products (NGPs). Food and Chemical Toxicology, 2018, 113, 337-344.	3.6	26
23	An approach for the extract generation and toxicological assessment of tobacco-free â€~modern' oral nicotine pouches. Food and Chemical Toxicology, 2020, 145, 111713.	3.6	26
24	A comparative assessment of cigarette smoke aerosols using an <i>in vitro</i> air–liquid interface cytotoxicity test. Inhalation Toxicology, 2015, 27, 629-640.	1.6	25
25	Extreme testing of undiluted e-cigarette aerosol in vitro using an Ames air-agar-interface technique. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2018, 828, 46-54.	1.7	25
26	Development of a BALB/c 3T3 neutral red uptake cytotoxicity test using a mainstream cigarette smoke exposure system. BMC Research Notes, 2014, 7, 367.	1.4	24
27	Differential Gene Expression Using RNA Sequencing Profiling in a Reconstituted Airway Epithelium Exposed to Conventional Cigarette Smoke or Electronic Cigarette Aerosols. Applied in Vitro Toxicology, 2017, 3, 84-98.	1.1	23
28	Quantification of Cigarette Smoke Particle Deposition <i>In Vitro</i> Using a Triplicate Quartz Crystal Microbalance Exposure Chamber. BioMed Research International, 2013, 2013, 1-9.	1.9	22
29	An improved method for the isolation of rat alveolar type II lung cells: Use in the Comet assay to determine DNA damage induced by cigarette smoke. Regulatory Toxicology and Pharmacology, 2015, 72, 141-149.	2.7	19
30	Genotoxicity evaluation of tobacco and nicotine delivery products: Part One. Mouse lymphoma assay. Food and Chemical Toxicology, 2019, 132, 110584.	3.6	17
31	Assessment of enamel discoloration in vitro following exposure to cigarette smoke and emissions from novel vapor and tobacco heating products. American Journal of Dentistry, 2018, 31, 227-233.	0.1	15
32	Cigarette smoke induced genotoxicity and respiratory tract pathology: evidence to support reduced exposure time and animal numbers in tobacco product testing. Inhalation Toxicology, 2016, 28, 324-338.	1.6	14
33	The genotoxicological assessment of a tobacco heating product relative to cigarette smoke using the in vitro micronucleus assay. Toxicology Reports, 2020, 7, 1010-1019.	3.3	14
34	A Case Study for the Comparison ofIn VitroData Across Multiple Aerosol Exposure Studies with Extrapolation to Human Dose. Applied in Vitro Toxicology, 2018, 4, 167-179.	1.1	13
35	An inter-laboratory in vitro assessment of cigarettes and next generation nicotine delivery products. Toxicology Letters, 2019, 315, 14-22.	0.8	13
36	Optimization of aqueous aerosol extract (AqE) generation from e-cigarettes and tobacco heating products for in vitro cytotoxicity testing. Toxicology Letters, 2020, 335, 51-63.	0.8	11

DAVID THORNE

#	Article	IF	CITATIONS
37	Evaluation of a high-throughput in vitro endothelial cell migration assay for the assessment of nicotine and tobacco delivery products. Toxicology Letters, 2020, 334, 110-116.	0.8	10
38	The in vitro assessment of a novel vaping technology. Toxicology Reports, 2020, 7, 1145-1156.	3.3	9
39	A 3D in vitro comparison of two undiluted e-cigarette aerosol generating systems. Toxicology Letters, 2022, 358, 69-79.	0.8	8
40	Workshop Series to Identify, Discuss, and Develop Recommendations for the Optimal Generation and Use of In Vitro Assay Data for Tobacco Product Evaluation: Phase 1 Genotoxicity Assays. Applied in Vitro Toxicology, 2020, 6, 49-63.	1.1	7
41	Application of ToxTracker for the toxicological assessment of tobacco and nicotine delivery products. Toxicology Letters, 2022, 358, 59-68.	0.8	7
42	In vitro biological assessment of the stability of cigarette smoke aqueous aerosol extracts. BMC Research Notes, 2020, 13, 492.	1.4	6
43	An interlaboratory in vitro aerosol exposure system reference study. Toxicology Research and Application, 2021, 5, 239784732199275.	0.6	6
44	Evaluation of behavioural, chemical, toxicological and clinical studies of a tobacco heated product gloâ,,¢ and the potential for bridging from a foundational dataset to new product iterations. Toxicology Reports, 2022, 9, 1426-1442.	3.3	4
45	An experimental aerosol air–agar interface mouse lymphoma assay methodology. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2020, 856-857, 503230.	1.7	3
46	A survey of aerosol exposure systems relative to the analysis of cytotoxicity: A Cooperation Centre for Scientific Research Relative to Tobacco (CORESTA) perspective. Toxicology Research and Application, 2021, 5, 239784732110222.	0.6	3
47	An Experimental Analytical and <i>In Vitro</i> Approach to Bridge Between Different Heated Tobacco Product Variants. Contributions To Tobacco and Nicotine Research, 2022, 31, 1-9.	0.4	1
48	A comparison of cigarette smoke test matrices and their responsiveness in the mouse lymphoma assay: A case study. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2022, 879-880, 503502.	1.7	1