Ying-Rui Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5268593/publications.pdf Version: 2024-02-01

YING-RUILU

#	Article	lF	CITATIONS
1	Biochar mediated uranium immobilization in magnetite rich Cu tailings subject to organic matter amendment and native plant colonization. Journal of Hazardous Materials, 2022, 427, 127860.	12.4	8
2	A General Strategy for Engineering Single-Metal Sites on 3D Porous N, P Co-Doped Ti ₃ C ₂ T _X MXene. ACS Nano, 2022, 16, 4116-4125.	14.6	63
3	Rhizosphere Drives Biotite-Like Mineral Weathering and Secondary Fe–Si Mineral Formation in Fe Ore Tailings. ACS Earth and Space Chemistry, 2021, 5, 618-631.	2.7	16
4	Controlling Ni ²⁺ from the Surface to the Bulk by a New Cathode Electrolyte Interphase Formation on a Ni-Rich Layered Cathode in High-Safe and High-Energy-Density Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 7355-7369.	8.0	20
5	High-Performance NaK ₂ Li[Li ₃ SiO ₄] ₄ :Eu Green Phosphor for Backlighting Light-Emitting Diodes. Chemistry of Materials, 2021, 33, 1893-1899.	6.7	31
6	AuPd Nanoicosahedra: Atomic-Level Surface Modulation for Optimization of Electrocatalytic and Photocatalytic Energy Conversion. ACS Applied Energy Materials, 2021, 4, 2652-2662.	5.1	4
7	Paired Ru‒O‒Mo ensemble for efficient and stable alkaline hydrogen evolution reaction. Nano Energy, 2021, 82, 105767.	16.0	86
8	Tuning Charge Distribution of FeN ₄ via External N for Enhanced Oxygen Reduction Reaction. ACS Catalysis, 2021, 11, 6304-6315.	11.2	114
9	Acidophilic Iron- and Sulfur-Oxidizing Bacteria, <i>Acidithiobacillus ferrooxidans</i> , Drives Alkaline pH Neutralization and Mineral Weathering in Fe Ore Tailings. Environmental Science & Technology, 2021, 55, 8020-8034.	10.0	24
10	Bioaugmentation with Acidithiobacillus species accelerates mineral weathering and formation of secondary mineral cements for hardpan development in sulfidic Pb-Zn tailings. Journal of Hazardous Materials, 2021, 411, 124988.	12.4	13
11	Unveiling the In Situ Generation of a Monovalent Fe(I) Site in the Single-Fe-Atom Catalyst for Electrochemical CO ₂ Reduction. ACS Catalysis, 2021, 11, 7292-7301.	11.2	51
12	Crystal and Electronic Structure Modification of Synthetic Perryite Minerals: A Facile Phase Transformation Strategy to Boost the Oxygen Evolution Reaction. Inorganic Chemistry, 2021, 60, 13607-13614.	4.0	4
13	Spontaneously Sn-Doped Bi/BiO _{<i>x</i>} Core–Shell Nanowires Toward High-Performance CO ₂ Electroreduction to Liquid Fuel. Nano Letters, 2021, 21, 6907-6913.	9.1	69
14	Chemodiversity of Dissolved Organic Matter and Its Molecular Changes Driven by Rhizosphere Activities in Fe Ore Tailings Undergoing Eco-Engineered Pedogenesis. Environmental Science & Technology, 2021, 55, 13045-13060.	10.0	11
15	Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage. Science, 2020, 370, 192-197.	12.6	336
16	Identification of the Electronic and Structural Dynamics of Catalytic Centers in Single-Fe-Atom Material. CheM, 2020, 6, 3440-3454.	11.7	231
17	Iron phthalocyanine with coordination induced electronic localization to boost oxygen reduction reaction. Nature Communications, 2020, 11, 4173.	12.8	358
18	Electronic structure inspired a highly robust electrocatalyst for the oxygen-evolution reaction. Chemical Communications, 2020, 56, 8071-8074.	4.1	15

Ying-Rui Lu

#	Article	IF	CITATIONS
19	Dynamic active-site generation of atomic iridium stabilized on nanoporous metal phosphides for water oxidation. Nature Communications, 2020, 11, 2701.	12.8	204
20	Enhancing CO ₂ reduction by suppressing hydrogen evolution with polytetrafluoroethylene protected copper nanoneedles. Journal of Materials Chemistry A, 2020, 8, 15936-15941.	10.3	78
21	Geochemical and mineralogical changes in magnetite Fe-ore tailings induced by biomass organic matter amendment. Science of the Total Environment, 2020, 724, 138196.	8.0	22
22	Organic Matter Amendment and Plant Colonization Drive Mineral Weathering, Organic Carbon Sequestration, and Water-Stable Aggregation in Magnetite Fe Ore Tailings. Environmental Science & Technology, 2019, 53, 13720-13731.	10.0	48
23	Deficiencies of secondary Fe (oxy)hydroxides associated with phyllosilicates and organic carbon limit the formation of water-stable aggregates in Fe-ore tailings. Chemical Geology, 2019, 523, 73-87.	3.3	19
24	Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction. Nature Communications, 2019, 10, 1743.	12.8	430
25	Microstructural characteristics of naturally formed hardpan capping sulfidic copper-lead-zinc tailings. Environmental Pollution, 2018, 242, 1500-1509.	7.5	20
26	Turn the Trash into Treasure: Egg-White-Derived Single-Atom Electrocatalysts Boost Oxygen Reduction Reaction. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	6