Francesco Mauriello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5268433/publications.pdf

Version: 2024-02-01

279798 233421 2,161 61 23 45 citations h-index g-index papers 69 69 69 2123 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Direct Reuse of Spent Lithium-lon Batteries as an Efficient Heterogeneous Catalyst for the Reductive Upgrading of Biomass-Derived Furfural. ACS Sustainable Chemistry and Engineering, 2022, 10, 2275-2281.	6.7	11
2	From bio-based furanics to biodegradable plastics. CheM, 2022, 8, 897-899.	11.7	6
3	AnchoisFert: A New Organic Fertilizer from Fish Processing Waste for Sustainable Agriculture. Global Challenges, 2022, 6, .	3.6	13
4	Economic and technical feasibility of AnchoisFert organic fertilizer production. Current Research in Green and Sustainable Chemistry, 2022, 5, 100315.	5.6	5
5	Nanostructured Bimetallic Pd-based Catalysts for the Valorization of Lignocellulosic Biomasses. , 2021, , 127-153.		O
6	Sustainable production of pharmaceutical, nutraceutical and bioactive compounds from biomass and waste. Chemical Society Reviews, 2021, 50, 11191-11207.	38.1	94
7	Sustainably Sourced Olive Polyphenols and Omega-3 Marine Lipids: A Synergy Fostering Public Health. ACS Food Science & Technology, 2021, 1, 139-145.	2.7	6
8	The Limonene Biorefinery: From Extractive Technologies to Its Catalytic Upgrading into p-Cymene. Catalysts, 2021, 11, 387.	3.5	10
9	Integral valorization of orange peel waste through optimized ensiling: Lactic acid and bioethanol production. Chemosphere, 2021, 271, 129602.	8.2	44
10	Orange peels-derived hydrochar for chemical sensing applications. Sensors and Actuators B: Chemical, 2021, 341, 130016.	7.8	25
11	Hot Research Topics in the Biomass Catalysis Section of the Catalysts Journal in 2018 and 2019. Catalysts, 2021, 11, 153.	3.5	O
12	Investigation on the Suitability of Engelhard Titanium Silicate as a Support for Ni-Catalysts in the Methanation Reaction. Catalysts, 2021, 11, 1225.	3.5	3
13	A New Biorefinery Approach for the Full Valorisation of Anchovy Residues: Use of the Sludge Generated during the Extraction of Fish Oil as a Nitrogen Supplement in Anaerobic Digestion. Applied Sciences (Switzerland), 2021, 11, 10163.	2.5	2
14	Hydrothermal Carbonization as Sustainable Process for the Complete Upgrading of Orange Peel Waste into Value-Added Chemicals and Bio-Carbon Materials. Applied Sciences (Switzerland), 2021, 11, 10983.	2.5	20
15	Transfer hydrogenolysis of aromatic ethers promoted by the bimetallic Pd/Co catalyst. Catalysis Today, 2020, 357, 511-517.	4.4	25
16	The rise of lignin biorefinery. Current Opinion in Green and Sustainable Chemistry, 2020, 24, 1-6.	5.9	99
17	Catalysis with Silver: From Complexes and Nanoparticles to MORALs and Single-Atom Catalysts. Catalysts, 2020, 10, 1343.	3.5	18
18	Hydrogenolysis of aromatic ethers under lignin-first conditions. Molecular Catalysis, 2020, 497, 111228.	2.0	32

#	Article	IF	CITATIONS
19	Recovery of Biomass Fly Ash and HDPE in Innovative Synthetic Lightweight Aggregates for Sustainable Geotechnical Applications. Sustainability, 2020, 12, 6552.	3.2	8
20	Reductive catalytic routes towards sustainable production of hydrogen, fuels and chemicals from biomass derived polyols. Renewable and Sustainable Energy Reviews, 2020, 127, 109852.	16.4	58
21	Pd/Fe3O4 Nanofibers for the Catalytic Conversion of Lignin-Derived Benzyl Phenyl Ether under Transfer Hydrogenolysis Conditions. Catalysts, 2020, 10, 20.	3.5	19
22	Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural. Chemical Society Reviews, 2020, 49, 4273-4306.	38.1	559
23	Improved Catalytic Transfer Hydrogenation of Levulinate Esters with Alcohols over ZrO2 Catalyst. , 2020, 2, .		2
24	A Short Overview on the Hydrogen Production Via Aqueous Phase Reforming (APR) of Cellulose, C6-C5 Sugars and Polyols. Catalysts, 2019, 9, 917.	3.5	52
25	Catalytic Processes for The Valorization of Biomass Derived Molecules. Catalysts, 2019, 9, 674.	3.5	4
26	Transfer Hydrogenation of Methyl and Ethyl Levulinate Promoted by a ZrO ₂ Catalyst: Comparison of Batch vs Continuous Gas-Flow Conditions. ACS Sustainable Chemistry and Engineering, 2019, 7, 9937-9947.	6.7	51
27	Tuning Catalytic Properties of Supported Bimetallic Pd/Ir Systems in the Hydrogenation of Cinnamaldehyde by Using the "Water-in-Oil―Microemulsion Method. Journal of Chemistry, 2019, 2019, 1-11.	1.9	5
28	Bioethanol Production from Unpretreated Cellulose under Neutral Selfsustainable Hydrolysis/Hydrogenolysis Conditions Promoted by the Heterogeneous Pd/Fe ₃ O ₄ Catalyst. ACS Omega, 2019, 4, 352-357.	3.5	25
29	Hydrogenolysis of sorbitol into valuable C3-C2 alcohols at low H2 pressure promoted by the heterogeneous Pd/Fe3O4 catalyst. Molecular Catalysis, 2018, 446, 152-160.	2.0	43
30	Sustainable Exploitation of Coffee Silverskin in Water Remediation. Sustainability, 2018, 10, 3547.	3.2	34
31	Catalytic Transfer Hydrogenolysis as an Effective Tool for the Reductive Upgrading of Cellulose, Hemicellulose, Lignin, and Their Derived Molecules. Catalysts, 2018, 8, 313.	3.5	58
32	Catalytic Transfer Hydrogenolysis of Lignin-Derived Aromatic Ethers Promoted by Bimetallic Pd/Ni Systems. ACS Sustainable Chemistry and Engineering, 2018, 6, 9269-9276.	6.7	112
33	Upgrading Lignocellulosic Biomasses: Hydrogenolysis of Platform Derived Molecules Promoted by Heterogeneous Pd-Fe Catalysts. Catalysts, 2017, 7, 78.	3.5	42
34	Selective arene production from transfer hydrogenolysis of benzyl phenyl ether promoted by a co-precipitated Pd/Fe ₃ O ₄ catalyst. Catalysis Science and Technology, 2016, 6, 7937-7941.	4.1	76
35	Directing the Cleavage of Ester Câ^O Bonds by Controlling the Hydrogen Availability on the Surface of Coprecipitated Pd/Fe ₃ O ₄ . ChemCatChem, 2016, 8, 1515-1522.	3.7	16
36	Hydrogenolysis vs. aqueous phase reforming (APR) of glycerol promoted by a heterogeneous Pd/Fe catalyst. Catalysis Science and Technology, 2015, 5, 4466-4473.	4.1	37

#	Article	IF	CITATIONS
37	Aromatic Alcohols as Model Molecules for Studying Hydrogenolysis Reactions Promoted by Palladium Catalysts. Topics in Catalysis, 2015, 58, 1077-1084.	2.8	5
38	Exploring the catalytic properties of supported palladium catalysts in the transfer hydrogenolysis of glycerol. Applied Catalysis B: Environmental, 2015, 166-167, 121-131.	20.2	76
39	Unravelling the effect of Lewis acid properties of the support on the performance of palladium based catalyst in hydrogenation and hydrogenolysis reactions. Catalysis Today, 2015, 241, 208-213.	4.4	3
40	Optically active methacrylic copolymers with side-chain azoaromatic and 9-phenylcarbazole moieties. Reactive and Functional Polymers, 2012, 72, 1-10.	4.1	4
41	Polylactide and carbon nanotubes/smectite-clay nanocomposites: Preparation, characterization, sorptive and electrical properties. Applied Clay Science, 2011, 53, 188-194.	5. 2	48
42	Glycerol Hydrogenolysis Promoted by Supported Palladium Catalysts. ChemSusChem, 2011, 4, 1143-1150.	6.8	67
43	Aliphatic carbonyl reduction promoted by palladium catalysts under mild conditions. Applied Catalysis A: General, 2010, 379, 77-86.	4.3	32
44	Conversion of cis-2-butene-1,4-diol to hydrofurans on Pd/SiO2 and Pt/SiO2 catalysts under mild conditions: A FT-IR study. Journal of Molecular Catalysis A, 2010, 328, 27-34.	4.8	9
45	Synthesis, characterization and photoconductive properties of optically active methacrylic polymers bearing side-chain 9-phenylcarbazole moieties. Polymer, 2010, 51, 368-377.	3.8	23
46	Hydrogenation versus isomerization in the reaction of cis-2-butene-1,4-diol over supported catalysts: The role of Group VIII transition metals in driving the products selectivity. Applied Catalysis A: General, 2010, 390, 141-147.	4.3	8
47	H-Bonding of Furan and Its Hydrogenated Derivatives with the Isolated Hydroxyl of Amorphous Silica: An IR Spectroscopic and Thermodynamic Study. Journal of Physical Chemistry C, 2010, 114, 18233-18239.	3.1	19
48	Synthesis and Photoresponsive Properties of Optically Active Methacrylic Polymers Bearing Sideâ€Chain Azocarbazole Moieties. Macromolecular Chemistry and Physics, 2009, 210, 77-89.	2.2	11
49	Relevant chiroptical and thermal properties in optically active methacrylic copolymers containing carbazole and azoaromatic chromophores in the side-chain. Reactive and Functional Polymers, 2009, 69, 898-904.	4.1	6
50	Selective conversion of cis-2-butene-1,4-diol to 2-hydroxytetrahydrofuran over K, Ca and Ba metals-promoted Ru/SiO2 catalysts: Role of the promoter. Applied Catalysis A: General, 2009, 357, 106-113.	4.3	16
51	High <i>T</i> _g , Nonpoled Photorefractive Polymers. Chemistry of Materials, 2009, 21, 2403-2409.	6.7	21
52	Selective transfer hydrogenolysis of glycerol promoted by palladium catalysts in absence of hydrogen. Green Chemistry, 2009, 11, 1511.	9.0	87
53	Methacrylic Polymers Containing Optically Active Sideâ€Chain Carbazole: Synthesis, Characterization and Photoconductive Properties. Macromolecular Chemistry and Physics, 2008, 209, 944-956.	2.2	14
54	Synthesis and chiroptical properties of methacrilic copolymers containing in side-chain optically active carbazole and azochromophores. Proceedings of SPIE, 2007, 6653, 248.	0.8	1

#	Article	IF	CITATION:
55	Photoresponsive polymers containing side-chain chiral azocarbazole chromophores as multifunctional materials., 2007,,.		3
56	New Optically Active Methacrylic Polymers Bearing Side-Chain Bisazoaromatic Moieties. Macromolecular Chemistry and Physics, 2007, 208, 207-217.	2.2	5
57	Optically Active Methacrylic Copolymers Bearing Sideâ€Chain Bisazoaromatic and Bulky Achiral Moieties. Macromolecular Chemistry and Physics, 2007, 208, 1548-1559.	2.2	6
58	Synthesis, chiroptical properties and photoinduced birefringence of optically active methacrylic copolymers bearing side-chain bisazoaromatic moieties. European Polymer Journal, 2007, 43, 3550-3561.	5.4	23
59	Chiroptical and optical thermoplastic acid sensors based on chiral methacrylic polymers containing azoaromatic moieties. Sensors and Actuators B: Chemical, 2007, 126, 56-61.	7.8	21
60	Optically Active Methacrylic Polymers Bearing in the Side Chain the (S)-3-Hydroxypyrrolidinyl Group Linked totrans-bisazoaromatic Chromophore: Synthesis and Characterization. Macromolecular Symposia, 2006, 234, 68-75.	0.7	4
61	Synthesis of Optically Active Photoresponsive Multifunctional Polymer Containing the Side-Chain Azocarbazole Chromophore. Macromolecular Chemistry and Physics, 2006, 207, 1805-1813.	2.2	31