Da-Wei Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5268196/publications.pdf

Version: 2024-02-01

257450 214800 2,311 55 24 47 citations h-index g-index papers 60 60 60 3209 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Carbon dots induced in-situ formation of porous europium micro-networks with enhanced photocatalysis. Journal of Colloid and Interface Science, 2022, 606, 600-606.	9.4	21
2	Customized Carbon Dots with Predictable Optical Properties Synthesized at Room Temperature Guided by Machine Learning. Chemistry of Materials, 2022, 34, 998-1009.	6.7	40
3	Dynamic Visualization of Endoplasmic Reticulum Stress in Living Cells via a Two-Stage Cascade Recognition Process. Analytical Chemistry, 2022, 94, 2882-2890.	6.5	17
4	Deep Learning-Based Spectral Extraction for Improving the Performance of Surface-Enhanced Raman Spectroscopy Analysis on Multiplexed Identification and Quantitation. Journal of Physical Chemistry A, 2022, 126, 2278-2285.	2.5	9
5	Reversible polymerization of carbon dots based on dynamic covalent imine bond. Journal of Colloid and Interface Science, 2022, 621, 464-469.	9.4	13
6	MOFs-functionalized regenerable SERS sensor based on electrochemistry for pretreatment-free detection of serum alkaline phosphatase activity. Sensors and Actuators B: Chemical, 2022, 369, 132264.	7.8	17
7	Electrochemically renewable SERS sensor: A new platform for the detection of metabolites involved in peroxide production. Biosensors and Bioelectronics, 2021, 175, 112918.	10.1	21
8	Sialidase-Conjugated "NanoNiche―for Efficient Immune Checkpoint Blockade Therapy. ACS Applied Bio Materials, 2021, 4, 5735-5741.	4.6	8
9	<i>In Situ</i> Characterization of Dehydration during Ion Transport in Polymeric Nanochannels. Journal of the American Chemical Society, 2021, 143, 14242-14252.	13.7	89
10	In Situ Monitoring of Hydrogen Peroxide Released from Living Cells Using a ZIF-8-Based Surface-Enhanced Raman Scattering Sensor. Analytical Chemistry, 2021, 93, 12609-12616.	6.5	22
11	Dual-Emitting Carbonized Polymer Dots Synthesized at Room Temperature for Ratiometric Fluorescence Sensing of Vitamin B12. ACS Applied Materials & Samp; Interfaces, 2021, 13, 50228-50235.	8.0	22
12	Nanopipette-Based Nanosensor for Label-Free Electrochemical Monitoring of Cell Membrane Rupture under H ₂ O ₂ Treatment. Analytical Chemistry, 2021, 93, 13967-13973.	6.5	10
13	Nâ€Confused Phlorinâ€Prodigiosin Chimera: <i>meso</i> à€Aryl Oxidation and Ï€â€Extension Triggered by Peripheral Coordination. Angewandte Chemie - International Edition, 2020, 59, 1537-1541.	13.8	32
14	Sensitive and selective SERS probe for detecting the activity of \hat{l}^3 -glutamyl transpeptidase in serum. Analytica Chimica Acta, 2020, 1099, 119-125.	5.4	10
15	"Hot-node―controlled facile synthesis of 3D rare earth micro-networks with symmetry deviation induced high luminescence. Journal of Materials Chemistry C, 2020, 8, 11962-11969.	5. 5	18
16	Enzyme-free amplified SERS immunoassay for the ultrasensitive detection of disease biomarkers. Chemical Communications, 2020, 56, 2933-2936.	4.1	22
17	Recyclable three-dimensional Ag nanorod arrays decorated with O-g-C3N4 for highly sensitive SERS sensing of organic pollutants. Journal of Hazardous Materials, 2019, 379, 120823.	12.4	47
18	Detection of leucine aminopeptidase activity in serum using surface-enhanced Raman spectroscopy. Analyst, The, 2019, 144, 1394-1400.	3.5	8

#	Article	IF	Citations
19	Facile <i>in situ</i> synthesis of core–shell MOF@Ag nanoparticle composites on screen-printed electrodes for ultrasensitive SERS detection of polycyclic aromatic hydrocarbons. Journal of Materials Chemistry A, 2019, 7, 14108-14117.	10.3	87
20	Simultaneous Removal of Multiple Heavy Metal Ions from River Water Using Ultrafine Mesoporous Magnetite Nanoparticles. ACS Omega, 2019, 4, 7543-7549.	3.5	108
21	Electrochemistry-Regulated Recyclable SERS Sensor for Sensitive and Selective Detection of Tyrosinase Activity. Analytical Chemistry, 2019, 91, 6507-6513.	6.5	43
22	SERS-based chip for discrimination of formaldehyde and acetaldehyde in aqueous solution using silver reduction. Mikrochimica Acta, 2019, 186, 175.	5.0	20
23	Simultaneous Detection of Intracellular Nitric Oxide and Peroxynitrite by a Surface-Enhanced Raman Scattering Nanosensor with Dual Reactivity. ACS Sensors, 2019, 4, 3234-3239.	7.8	16
24	Highly Sensitive and Selective Electrochemical Detection of Dopamine using Hybrid Bilayer Membranes. ChemElectroChem, 2019, 6, 634-637.	3.4	14
25	A phenylboronate-based SERS nanoprobe for detection and imaging of intracellular peroxynitrite. Mikrochimica Acta, 2019, 186, 11.	5.0	20
26	Reaction-based SERS nanosensor for monitoring and imaging the endogenous hypochlorous acid in living cells. Analytica Chimica Acta, 2018, 1018, 104-110.	5.4	20
27	On-site preconcentration of pesticide residues in a drop of seawater by using electrokinetic trapping, and their determination by surface-enhanced Raman scattering. Mikrochimica Acta, 2018, 185, 10.	5.0	31
28	Individual Modified Carbon Nanotube Collision for Electrocatalytic Oxidation of Hydrazine in Aqueous Solution. ACS Applied Nano Materials, 2018, 1, 2069-2075.	5.0	12
29	Electrocatalytic Oxidation of Tris(2-carboxyethyl)phosphine at Pyrroloquinoline Quinone Modified Carbon Nanotube through Single Nanoparticle Collision. Analytical Chemistry, 2018, 90, 6059-6063.	6.5	13
30	Facile fabrication of ternary TiO2-gold nanoparticle-graphene oxide nanocomposites for recyclable surface enhanced Raman scattering. Talanta, 2018, 186, 265-271.	5. 5	21
31	Spectroelectrochemical study of the AMP-Ag ⁺ and ATP-Ag ⁺ complexes using silver mesh electrodes. Analyst, The, 2018, 143, 2342-2348.	3.5	5
32	Griess reaction-based paper strip for colorimetric/fluorescent/SERS triple sensing of nitrite. Biosensors and Bioelectronics, 2018, 99, 389-398.	10.1	131
33	Monitoring disulfide bonds making and breaking in biological nanopore at single molecule level. Science China Chemistry, 2018, 61, 1385-1388.	8.2	14
34	Facile fabrication of silver nanoparticle-coated silica-C18 core–shell microspheres and their applications in SERS detection. RSC Advances, 2017, 7, 19262-19266.	3.6	3
35	Real-Time Sensing of O-Phenylenediamine Oxidation on Gold Nanoparticles. Sensors, 2017, 17, 530.	3.8	20
36	SERS nanoprobes for the monitoring of endogenous nitric oxide in living cells. Biosensors and Bioelectronics, 2016, 85, 324-330.	10.1	56

#	Article	IF	CITATIONS
37	Highly Reproducible Ag NPs/CNT-Intercalated GO Membranes for Enrichment and SERS Detection of Antibiotics. ACS Applied Materials & Samp; Interfaces, 2016, 8, 28180-28186.	8.0	85
38	Monitoring of Endogenous Hydrogen Sulfide in Living Cells Using Surfaceâ€Enhanced Raman Scattering. Angewandte Chemie - International Edition, 2015, 54, 12758-12761.	13.8	122
39	Facile Fabrication of a Silver Dendrite-Integrated Chip for Surface-Enhanced Raman Scattering. ACS Applied Materials & Samp; Interfaces, 2015, 7, 2931-2936.	8.0	50
40	Label-free in-situ monitoring of protein tyrosine nitration in blood by surface-enhanced Raman spectroscopy. Biosensors and Bioelectronics, 2015, 69, 1-7.	10.1	20
41	Raman/fluorescence dual-sensing and imaging of intracellular pH distribution. Chemical Communications, 2015, 51, 17584-17587.	4.1	33
42	Highly Selective Detection of Carbon Monoxide in Living Cells by Palladacycle Carbonylation-Based Surface Enhanced Raman Spectroscopy Nanosensors. Analytical Chemistry, 2015, 87, 9696-9701.	6.5	92
43	In situ monitoring of palladacycle-mediated carbonylation by surface-enhanced Raman spectroscopy. RSC Advances, 2015, 5, 97734-97737.	3.6	3
44	A hybrid method combining an electrochemical technique and fluorescence measurement for the highly selective and sensitive detection of Cd ²⁺ . Analytical Methods, 2015, 7, 472-477.	2.7	4
45	Recent progress in surface enhanced Raman spectroscopy for the detection of environmental pollutants. Mikrochimica Acta, 2014, 181, 23-43.	5.0	239
46	SERS sensing of sulfide based on the sulfidation of silver nanoparticles. Analytical Methods, 2013, 5, 6579.	2.7	19
47	Low temperature synthesis and SERS application of silver molybdenum oxides. Journal of Materials Chemistry A, 2013, 1, 2558.	10.3	43
48	Rapid method for on-site determination of phenolic contaminants in water using a disposable biosensor. Frontiers of Environmental Science and Engineering, 2012, 6, 831-838.	6.0	4
49	Cu@Ag/ \hat{I}^2 -AgVO3 as a SERS substrate for the trace level detection of carbamate pesticides. Analytical Methods, 2012, 4, 3785.	2.7	24
50	Inside Back Cover: Electrodeposition of Single-Metal Nanoparticles on Stable Proteinâ€1 Membranes: Application of Plasmonic Sensing by Single Nanoparticles (Angew. Chem. Int. Ed. 1/2012). Angewandte Chemie - International Edition, 2012, 51, 277-277.	13.8	0
51	CdSe/ZnS quantum dot–Cytochrome c bioconjugates for selective intracellular O2Ë™â^' sensing. Chemical Communications, 2011, 47, 8539.	4.1	54
52	Facile On-Site Detection of Substituted Aromatic Pollutants in Water Using Thin Layer Chromatography Combined with Surface-Enhanced Raman Spectroscopy. Environmental Science & Technology, 2011, 45, 4046-4052.	10.0	155
53	Simultaneous determination of cadmium(II), lead(II) and copper(II) by using a screen-printed electrode modified with mercury nano-droplets. Mikrochimica Acta, 2010, 169, 321-326.	5.0	76
54	High Sensitive On-Site Cadmium Sensor Based on AuNPs Amalgam Modified Screen-Printed Carbon Electrodes. IEEE Sensors Journal, 2010, 10, 1583-1588.	4.7	33

#	Article	IF	CITATIONS
55	Simultaneous determination of dihydroxybenzene isomers using disposable screen-printed electrode modified by multiwalled carbon nanotubes and gold nanoparticles. Analytical Methods, 2010, 2, 837.	2.7	93