Nathan A Jud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/526806/publications.pdf

Version: 2024-02-01

686830 610482 29 623 13 24 h-index citations g-index papers 29 29 29 925 times ranked citing authors docs citations all docs

#	Article	IF	CITATIONS
1	Fossil evidence from South America for the diversification of Cunoniaceae by the earliest Palaeocene. Annals of Botany, 2021, 127, 305-315.	1.4	10
2	Climbing since the early Miocene: The fossil record of Paullinieae (Sapindaceae). PLoS ONE, 2021, 16, e0248369.	1.1	9
3	A eudicot leaf from the Lower Cretaceous (Aptian, Araripe Basin) Crato Konservatâ€LagerstÃtte. American Journal of Botany, 2021, 108, 2055-2065.	0.8	7
4	A comparison of Asturian lepidodendroid lycophytes from the USA and the Euramerican Variscan Front. Geobios, 2019, 56, 31-48.	0.7	4
5	<i>Azolla</i> Sporophytes and Spores from the Late Cretaceous and Paleocene of Patagonia, Argentina. International Journal of Plant Sciences, 2019, 180, 737-754.	0.6	15
6	A vision for historical biogeography. Current Biology, 2019, 29, R3-R4.	1.8	0
7	Chronostratigraphic Revision of the Cloverly Formation (Lower Cretaceous, Western Interior, USA). Bulletin of the Peabody Museum of Natural History, 2019, 60, 3.	0.6	17
8	Fossil flowers from the early Palaeocene of Patagonia, Argentina, with affinity to Schizomerieae (Cunoniaceae). Annals of Botany, 2018, 121, 431-442.	1.4	25
9	A new fossil assemblage shows that large angiosperm trees grew in North America by the Turonian (Late Cretaceous). Science Advances, 2018, 4, eaar8568.	4.7	14
10	Fossil moonseeds from the Paleogene of West Gondwana (Patagonia, Argentina). American Journal of Botany, 2018, 105, 927-942.	0.8	22
11	A liana from the lower Miocene of Panama and the fossil record of Connaraceae. American Journal of Botany, 2017, 104, 685-693.	0.8	5
12	Angiosperm wood from the Upper Cretaceous (Coniacian) of British Columbia, Canada. IAWA Journal, 2017, 38, 141-161.	2.7	13
13	Biogeographic Implications of <i>Mammea paramericana < i>sp. nov. from the Lower Miocene of Panama and the Evolution of Calophyllaceae. International Journal of Plant Sciences, 2017, 178, 241-257.</i>	0.6	8
14	Panascleroticoxylon crystallosa gen. et sp. nov.: a new Miocene malpighialean tree from Panama. IAWA Journal, 2017, 38, 437-455.	2.7	3
15	Fossil woods from the Cenozoic of Panama (Azuero Peninsula) reveal an ancient neotropical rainforest. IAWA Journal, 2017, 38, 366-S2.	2.7	8
16	Flowering after disaster: Early Danian buckthorn (Rhamnaceae) flowers and leaves from Patagonia. PLoS ONE, 2017, 12, e0176164.	1.1	25
17	Integrated Chronology, Flora and Faunas, and Paleoecology of the Alajuela Formation, Late Miocene of Panama. PLoS ONE, 2017, 12, e0170300.	1.1	10
18	Evidence for an ancient association between leaf mining flies and herbaceous eudicot angiosperms. Cretaceous Research, 2016, 63, 113-121.	0.6	9

#	Article	IF	CITATIONS
19	First North American fossil monkey and early Miocene tropical biotic interchange. Nature, 2016, 533, 243-246.	13.7	89
20	Lyons et al. reply. Nature, 2016, 537, E5-E6.	13.7	0
21	Lyons et al. reply. Nature, 2016, 538, E3-E4.	13.7	1
22	Anatomy, systematics, paleoenvironment, growth, and age of the sauropod dinosaur <i>Sonorasaurus thompsoni</i> from the Cretaceous of Arizona, USA. Journal of Paleontology, 2016, 90, 102-132.	0.5	20
23	Holocene shifts in the assembly of plant and animal communities implicate human impacts. Nature, 2016, 529, 80-83.	13.7	147
24	Fruits and wood of <i>Parinari</i> from the early Miocene of Panama and the fossil record of Chrysobalanaceae. American Journal of Botany, 2016, 103, 277-289.	0.8	14
25	Fossil evidence for a herbaceous diversification of early eudicot angiosperms during the Early Cretaceous. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151045.	1.2	33
26	Morphotype Catalog of a Zone I (Aptianâ€"Earliest Albian) Flora from Fairlington, Virginia, USA. Bulletin of the Peabody Museum of Natural History, 2014, 55, 135-152.	0.6	5
27	<i>Potomacapnos apeleutheron</i> gen. et sp. nov., a new Early Cretaceous angiosperm from the Potomac Group and its implications for the evolution of eudicot leaf architecture. American Journal of Botany, 2013, 100, 2437-2449.	0.8	25
28	Pennsylvanian coniferopsid forests in sabkha facies reveal the nature of seasonal tropical biome. Geology, 2011, 39, 371-374.	2.0	51
29	<i>Todea</i> from the Lower Cretaceous of western North America: implications for the phylogeny, systematics, and evolution of modern Osmundaceae. American Journal of Botany, 2008, 95, 330-339.	0.8	34