Kazuo Takimiya

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5267916/kazuo-takimiya-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

21,893 416 76 134 h-index g-index citations papers 23,418 7.2 7.05 475 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
416	Bandlike versus Temperature-Independent Carrier Transport in Isomeric Diphenyldinaphtho[2,3-b:2?,3?-f]thieno[3,2-b]thiophenes 2022 , 4, 675-681		2
415	Raman Activities of Cyano-Ester Quinoidal Oligothiophenes Reveal Their Diradical Character and the Proximity of the Low-Lying Double Exciton State. <i>Chemistry</i> , 2022 , 4, 329-344	2.1	
414	Highly-efficient terahertz emission from hydrogen-bonded single molecular crystal 4-nitro-2,5-bis(phenylethynyl)aniline. <i>Optics Express</i> , 2021 , 29, 10048-10058	3.3	1
413	Crystal Structures of Methylchalcogenated Tetrathienoacenes: From One-Dimensional Estacking to Sandwich Pitched Estacking Structure. <i>Crystal Growth and Design</i> , 2021 , 21, 4055-4063	3.5	О
412	Dihedral-Angle Dependence of Intermolecular Transfer Integrals in BEDT-BDT-Based Radical-Cation Salts with EType Molecular Arrangements. <i>Crystals</i> , 2021 , 11, 868	2.3	O
411	Naphthobisthiadiazole-Based Semiconducting Polymers for High-Efficiency Organic Photovoltaics 2021 , 321-341		
410	A Design Principle for Polar Assemblies with C -Sym Bowl-Shaped Econjugated Molecules. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 3261-3267	16.4	5
409	Low voltage operating organic light emitting transistors with efficient charge blocking layer. <i>Organic Electronics</i> , 2021 , 88, 106024	3.5	3
408	A Design Principle for Polar Assemblies with C3-Sym Bowl-Shaped EConjugated Molecules. <i>Angewandte Chemie</i> , 2021 , 133, 3298-3304	3.6	1
407	"Manipulation" of Crystal Structure by Methylthiolation Enabling Ultrahigh Mobility in a Pyrene-Based Molecular Semiconductor. <i>Advanced Materials</i> , 2021 , 33, e2102914	24	8
406	Strong Suppression of Thermal Conductivity in the Presence of Long Terminal Alkyl Chains in Low-Disorder Molecular Semiconductors. <i>Advanced Materials</i> , 2021 , 33, e2008708	24	8
405	Quinoid-Aromatic Resonance for Very Small Optical Energy Gaps in Small-Molecule Organic Semiconductors: A Naphthodithiophenedione-oligothiophene Triad System. <i>Chemistry - A European Journal</i> , 2021 , 27, 15660-15670	4.8	1
404	Field-Induced Electron Spin Resonance of Site-Selective Carrier Accumulation in Field-Effect Transistors Composed of Organic Semiconductor Solid Solutions. <i>Physical Review Applied</i> , 2021 , 16,	4.3	1
403	Heavy-atom effects[In the parent [1]benzochalcogenopheno[3,2-b][1]benzochalcogenophene system. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 15119-15127	7.1	6
402	Naphthodithiophenediimide-Bithiopheneimide Copolymers for High-Performance n-Type Organic Thermoelectrics: Significant Impact of Backbone Orientation on Conductivity and Thermoelectric Performance. <i>Advanced Materials</i> , 2020 , 32, e2002060	24	51
401	Spatial extent of wave functions of charge carriers in a thienothiophene-based high-mobility molecular semiconductor. <i>Applied Physics Express</i> , 2020 , 13, 041004	2.4	1
400	Carbonyl-Terminated Quinoidal Oligothiophenes as p-Type Organic Semiconductors. <i>Materials</i> , 2020 , 13,	3.5	3

(2019-2020)

399	"Disrupt and induce" intermolecular interactions to rationally design organic semiconductor crystals: from herringbone to rubrene-like pitched Estacking. <i>Chemical Science</i> , 2020 , 11, 1573-1580	9.4	17
398	Tuning Spin Current Injection at Ferromagnet-Nonmagnet Interfaces by Molecular Design. <i>Physical Review Letters</i> , 2020 , 124, 027204	7.4	9
397	Crystal Structures of Dimethoxyanthracens: A Clue to a Rational Design of Packing Structures of Econjugated Molecules. <i>Chemistry - an Asian Journal</i> , 2020 , 15, 915-919	4.5	5
396	Gate-tunable gas sensing behaviors in air-stable ambipolar organic thin-film transistors <i>RSC Advances</i> , 2020 , 10, 1910-1916	3.7	11
395	Synthesis of Soluble Dinaphtho[2,3-:2',3'-]thieno[3,2-]thiophene (DNTT) Derivatives: One-Step Functionalization of 2-Bromo-DNTT. <i>Journal of Organic Chemistry</i> , 2020 , 85, 195-206	4.2	10
394	Controlled steric selectivity in molecular doping towards closest-packed supramolecular conductors. <i>Communications Materials</i> , 2020 , 1,	6	5
393	Two-dimensional radicaldationic Mott insulator based on an electron donor containing neither a tetrathiafulvalene nor tetrathiapentalene skeleton. <i>CrystEngComm</i> , 2020 , 22, 5949-5953	3.3	1
392	Chasing the "Killer" Phonon Mode for the Rational Design of Low-Disorder, High-Mobility Molecular Semiconductors. <i>Advanced Materials</i> , 2019 , 31, e1902407	24	73
391	Two isomeric perylenothiophene diimides: physicochemical properties and applications in organic semiconducting devices. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 2267-2275	7.1	9
390	Effect of non-chlorinated solvents on the enhancement of field-effect mobility in dioctylbenzothienobenzothiophene-based top-gate organic transistors processed by spin coating. <i>Organic Electronics</i> , 2019 , 69, 181-189	3.5	6
389	Selenium-Substituted Methylthiobenzo[1,2-b:4,5-b?]dithiophenes: Synthesis, Packing Structure, and Transport Properties. <i>Chemistry of Materials</i> , 2019 , 31, 6696-6705	9.6	20
388	High Operation Stability of Ultraflexible Organic Solar Cells with Ultraviolet-Filtering Substrates. <i>Advanced Materials</i> , 2019 , 31, e1808033	24	28
387	Low optical turn-on voltage in solution processed hybrid light emitting transistor. <i>Applied Physics Letters</i> , 2019 , 115, 023301	3.4	8
386	Tuning the absorption range of naphthothiophene diimide-based acceptors for organic solar cells. <i>Dyes and Pigments</i> , 2019 , 171, 107691	4.6	
385	Naphtho[1,2-b:5,6-b?]dithiophene Building Blocks and their Complexation with Cyclobis(paraquat-p-phenylene). <i>European Journal of Organic Chemistry</i> , 2019 , 2019, 7532-7540	3.2	1
384	The effect of alkyl chain branching positions on the electron mobility and photovoltaic performance of naphthodithiophene diimide (NDTI)-based polymers. <i>Science China Chemistry</i> , 2019 , 62, 1649-1655	7.9	22
383	Durable Ultraflexible Organic Photovoltaics with Novel Metal-Oxide-Free Cathode. <i>Advanced Functional Materials</i> , 2019 , 29, 1808378	15.6	21
382	Synthesis of Thiophene-annulated Naphthalene Diimide-based Small-Molecular Acceptors via Two-step C-H Activation. <i>Chemistry - an Asian Journal</i> , 2019 , 14, 1651-1656	4.5	4

381	High-performance didodecylbenzothienobenzothiophene-based top-gate organic transistors processed by spin coating using binary solvent mixtures. <i>Organic Electronics</i> , 2018 , 58, 306-312	3.5	6
380	Thiacycle-fused benzo[1,2-b:4,5-b?]dithiophenes (BDTs): synthesis, packing, molecular orientation and semiconducting properties. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 3604-3612	7.1	16
379	Thiophene-Fused Naphthalene Diimides: New Building Blocks for Electron Deficient Functional Materials. <i>Bulletin of the Chemical Society of Japan</i> , 2018 , 91, 121-140	5.1	52
378	Solution-crystallized n-type organic thin-film transistors: An impact of branched alkyl chain on high electron mobility and thermal durability. <i>Organic Electronics</i> , 2018 , 62, 548-553	3.5	10
377	Extended and Modulated Thienothiophenes for Thermally Durable and Solution-Processable Organic Semiconductors. <i>Chemistry of Materials</i> , 2018 , 30, 5050-5060	9.6	20
376	Reverse-Offset Printed Ultrathin Ag Mesh for Robust Conformal Transparent Electrodes for High-Performance Organic Photovoltaics. <i>Advanced Materials</i> , 2018 , 30, e1707526	24	48
375	Thienoquinoidal System: Promising Molecular Architecture for Optoelectronic Applications. <i>Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry</i> , 2018 , 76, 1176-1184	0.2	15
374	Air-stable and balanced split-gate organic transistors. <i>Organic Electronics</i> , 2018 , 63, 200-206	3.5	2
373	Transparent Electrodes: Reverse-Offset Printed Ultrathin Ag Mesh for Robust Conformal Transparent Electrodes for High-Performance Organic Photovoltaics (Adv. Mater. 26/2018). <i>Advanced Materials</i> , 2018 , 30, 1870190	24	2
372	Selective thionation of naphtho[2,3-b]thiophene diimide: tuning of the optoelectronic properties and packing structure. <i>Organic Chemistry Frontiers</i> , 2017 , 4, 704-710	5.2	9
371	Naphthodithiophenediimide B enzobisthiadiazole-Based Polymers: Versatile n-Type Materials for Field-Effect Transistors and Thermoelectric Devices. <i>Macromolecules</i> , 2017 , 50, 857-864	5.5	111
370	Very Strong Binding for a Neutral Calix[4]pyrrole Receptor Displaying Positive Allosteric Binding. <i>Journal of Organic Chemistry</i> , 2017 , 82, 2123-2128	4.2	8
369	Naphthobischalcogenadiazole Conjugated Polymers: Emerging Materials for Organic Electronics. <i>Advanced Materials</i> , 2017 , 29, 1605218	24	72
368	Comparison among Perylene Diimide (PDI), Naphthalene Diimide (NDI), and Naphthodithiophene Diimide (NDTI) Based n-Type Polymers for All-Polymer Solar Cells Application. <i>Macromolecules</i> , 2017 , 50, 3179-3185	5.5	70
367	Cumulative gain in organic solar cells by using multiple optical nanopatterns. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 10347-10354	13	17
366	Tuning the effective spin-orbit coupling in molecular semiconductors. <i>Nature Communications</i> , 2017 , 8, 15200	17.4	50
365	High-performance solution-processed organic thin-film transistors based on a soluble DNTT derivative. <i>Organic Electronics</i> , 2017 , 46, 68-76	3.5	8
364	Dithienyl Acenedithiophenediones as New Extended Quinoidal Cores: Synthesis and Properties. <i>Chemistry - A European Journal</i> , 2017 , 23, 4579-4589	4.8	14

(2016-2017)

363	Effects of Selenium Atoms on [1]Benzochalcogenopheno[3,2-b][1]benzochalcogenophene-based Organic Semiconductors. <i>Chemistry Letters</i> , 2017 , 46, 345-347	1.7	9
362	Stretchable and waterproof elastomer-coated organic photovoltaics for washable electronic textile applications. <i>Nature Energy</i> , 2017 , 2, 780-785	62.3	270
361	Methylthionated benzo[1,2-b:4,5-b']dithiophenes: a model study to control packing structures and molecular orientation in thienoacene-based organic semiconductors. <i>Chemical Communications</i> , 2017 , 53, 9594-9597	5.8	15
360	2-V operated flexible vertical organic transistor with good air stability and bias stress reliability. <i>Organic Electronics</i> , 2017 , 50, 325-330	3.5	13
359	Ionic manipulation of charge-transfer and photodynamics of [60] fullerene confined in pyrrolo-tetrathiafulvalene cage. <i>Chemical Communications</i> , 2017 , 53, 9898-9901	5.8	5
358	Bis(naphthothiophene diimide)indacenodithiophenes as Acceptors for Organic Photovoltaics. <i>Chemistry of Materials</i> , 2017 , 29, 9618-9622	9.6	26
357	Control of Major Carriers in an Ambipolar Polymer Semiconductor by Self-Assembled Monolayers. <i>Advanced Materials</i> , 2017 , 29, 1602893	24	48
356	Effects of branching position of alkyl side chains on ordering structure and charge transport property in thienothiophenedione- and quinacridone-based semiconducting polymers. <i>Polymer Journal</i> , 2017 , 49, 169-176	2.7	20
355	Sodium Sulfide-Promoted Thiophene-Annulations: Powerful Tools for Elaborating Organic Semiconducting Materials. <i>Chemistry of Materials</i> , 2017 , 29, 256-264	9.6	32
354	Naphtho[2,3-b]thiophene diimide (NTI): a mono-functionalisable core-extended naphthalene diimide for electron-deficient architectures. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 8879-8883	7.1	32
353	Implication of Fluorine Atom on Electronic Properties, Ordering Structures, and Photovoltaic Performance in Naphthobisthiadiazole-Based Semiconducting Polymers. <i>Journal of the American Chemical Society</i> , 2016 , 138, 10265-75	16.4	277
352	N,N'-Unsubstituted Naphthodithiophene Diimide: Synthesis and Derivatization via N-Alkylation and -Arylation. <i>Organic Letters</i> , 2016 , 18, 3770-3	6.2	14
351	Reversible Dimerization and Polymerization of a Janus Diradical To Produce Labile CI Bonds and Large Chromic Effects. <i>Angewandte Chemie</i> , 2016 , 128, 14783-14788	3.6	15
350	Reversible Dimerization and Polymerization of a Janus Diradical To Produce Labile C-C Bonds and Large Chromic Effects. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 14563-14568	16.4	42
349	Dithienylthienothiophenebisimide, a Versatile Electron-Deficient Unit for Semiconducting Polymers. <i>Advanced Materials</i> , 2016 , 28, 6921-5	24	73
348	Soluble Dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene Derivatives for Solution-Processed Organic Field-Effect Transistors. <i>ACS Applied Materials & Samp; Interfaces</i> , 2016 , 8, 3810-24	9.5	35
347	Design and elaboration of organic molecules for high field-effect-mobility semiconductors. <i>Synthetic Metals</i> , 2016 , 217, 68-78	3.6	50
346	A comprehensive study of charge trapping in organic field-effect devices with promising semiconductors and different contact metals by displacement current measurements. <i>Semiconductor Science and Technology</i> , 2016 , 31, 025011	1.8	17

345	Naphthodithiophene Diimide-Based Copolymers: Ambipolar Semiconductors in Field-Effect Transistors and Electron Acceptors with Near-Infrared Response in Polymer Blend Solar Cells. <i>Macromolecules</i> , 2016 , 49, 1752-1760	5.5	65
344	Amide-bridged terphenyl and dithienylbenzene units for semiconducting polymers. <i>RSC Advances</i> , 2016 , 6, 16437-16447	3.7	3
343	Benzothienobenzothiophene-Based Molecular Conductors: High Conductivity, Large Thermoelectric Power Factor, and One-Dimensional Instability. <i>Journal of the American Chemical Society</i> , 2016 , 138, 3920-5	16.4	51
342	N,N'-Bis(2-cyclohexylethyl)naphtho[2,3-b:6,7-b']dithiophene Diimides: Effects of Substituents. <i>Molecules</i> , 2016 , 21,	4.8	8
341	Analyses of Thiophene-Based Donor Acceptor Semiconducting Polymers toward Designing Optical and Conductive Properties: A Theoretical Perspective. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 8305-8	3374	15
340	Very Small Bandgap Econjugated Polymers with Extended Thienoquinoids. <i>Journal of the American Chemical Society</i> , 2016 , 138, 7725-32	16.4	83
339	Detailed analysis and contact properties of low-voltage organic thin-film transistors based on dinaphtho[2,3-b:2?,3?-f]thieno[3,2-b]thiophene (DNTT) and its didecyl and diphenyl derivatives. <i>Organic Electronics</i> , 2016 , 35, 33-40	3.5	66
338	Naphthodithiophene Diimide (NDTI)-Based Semiconducting Copolymers: From Ambipolar to Unipolar n-Type Polymers. <i>Macromolecules</i> , 2015 , 48, 576-584	5.5	69
337	High Yield Ultrafast Intramolecular Singlet Exciton Fission in a Quinoidal Bithiophene. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 1375-84	6.4	91
336	Thermally, Operationally, and Environmentally Stable Organic Thin-Film Transistors Based on Bis[1]benzothieno[2,3-d:2?,3?-d?]naphtho[2,3-b:6,7-b?]dithiophene Derivatives: Effective Synthesis, Electronic Structures, and StructureProperty Relationship. <i>Chemistry of Materials</i> , 2015 , 27, 5049-5057	9.6	53
335	Thienothiophene-2,5-Dione-Based Donor Acceptor Polymers: Improved Synthesis and Influence of the Donor Units on Ambipolar Charge Transport Properties. <i>Advanced Electronic Materials</i> , 2015 , 1, 150	0 63 9	27
334	Naphthodithiophenediimide (NDTI)-based triads for high-performance air-stable, solution-processed ambipolar organic field-effect transistors. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 4244-4249	7.1	32
333	Modeling of Drain Current Mismatch in Organic Thin-Film Transistors. <i>Journal of Display Technology</i> , 2015 , 11, 559-563		5
332	EModified Naphthodithiophene DiimidesMolecular Design Strategy for Air-Stable n-Channel Organic Semiconductors. <i>Chemistry of Materials</i> , 2015 , 27, 6418-6425	9.6	55
331	Effect of Chalcogen Atom on the Properties of Naphthobischalcogenadiazole-Based Econjugated Polymers. <i>Chemistry of Materials</i> , 2015 , 27, 6558-6570	9.6	65
330	Naphthodithiophenes: emerging building blocks for organic electronics. <i>Chemical Record</i> , 2015 , 15, 175	- & &	17
329	Flexible low-voltage organic complementary circuits: finding the optimum combination of semiconductors and monolayer gate dielectrics. <i>Advanced Materials</i> , 2015 , 27, 207-14	24	93
328	Soluble organic semiconductor precursor with specific phase separation for high-performance printed organic transistors. <i>Advanced Materials</i> , 2015 , 27, 727-32	24	39

(2014-2015)

327	organic semiconductors: synthesis, properties, and device characteristics. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 283-290	7.1	24
326	Organic Thin-Film Transistors: Flexible Low-Voltage Organic Complementary Circuits: Finding the Optimum Combination of Semiconductors and Monolayer Gate Dielectrics (Adv. Mater. 2/2015). <i>Advanced Materials</i> , 2015 , 27, 391-391	24	
325	Thienoacenes 2015 , 359-382		
324	Highly Efficient and Stable Solar Cells Based on Thiazolothiazole and Naphthobisthiadiazole Copolymers. <i>Scientific Reports</i> , 2015 , 5, 14202	4.9	49
323	Solution-processed dinaphtho[2,3-b:2?,3?-f]thieno[3,2-b]thiophene transistor memory based on phosphorus-doped silicon nanoparticles as a nano-floating gate. <i>Applied Physics Express</i> , 2015 , 8, 10160	1 ^{2.4}	6
322	Angular-Shaped 4,9-Dialkyl <code>Hand Naphthodithiophene-Based Donor</code> cceptor Copolymers: Investigation of Isomeric Structural Effects on Molecular Properties and Performance of Field-Effect Transistors and Photovoltaics. <i>Advanced Functional Materials</i> , 2015 , 25, 6131-6143	15.6	46
321	Single-Crystal-Like Organic Thin-Film Transistors Fabricated from Dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) Precursor-Polystyrene Blends. <i>Advanced Materials</i> , 2015 , 27, 6606-11	24	40
320	Efficient inverted polymer solar cells employing favourable molecular orientation. <i>Nature Photonics</i> , 2015 , 9, 403-408	33.9	705
319	High-efficiency polymer solar cells with small photon energy loss. <i>Nature Communications</i> , 2015 , 6, 1008	8 5 7.4	322
318	Backbone orientation in semiconducting polymers. <i>Polymer</i> , 2015 , 59, A1-A15	3.9	127
317	Flat-lying semiconductor-insulator interfacial layer in DNTT thin films. <i>ACS Applied Materials & ACS Applied Materials & Interfaces</i> , 2015 , 7, 1833-40	9.5	36
316	Solution-processed single-crystalline organic transistors on patterned ultrathin gate insulators. <i>Organic Electronics</i> , 2014 , 15, 1184-1188	3.5	14
315	Novel dibenzo[a,e]pentalene-based conjugated polymers. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 64-7	7 9 .1	58
314	Thiophene-thiazolothiazole copolymers: significant impact of side chain composition on backbone orientation and solar cell performances. <i>Advanced Materials</i> , 2014 , 26, 331-8	24	249
313	Towards colorless transparent organic transistors: potential of benzothieno[3,2-b]benzothiophene-based wide-gap semiconductors. <i>Advanced Materials</i> , 2014 , 26, 310	5²-1 0	23
312	Quinoidal naphtho[1,2-b:5,6-b']dithiophenes for solution-processed n-channel organic field-effect transistors. <i>Organic Letters</i> , 2014 , 16, 1334-7	6.2	40
311	Contrasting Effect of Alkylation on the Ordering Structure in Isomeric Naphthodithiophene-Based Polymers. <i>Macromolecules</i> , 2014 , 47, 3502-3510	5.5	30
310	Dithiophene-Fused Tetracyanonaphthoquinodimethanes (DT-TNAPs): synthesis and characterization of Extended quinoidal compounds for n-channel organic semiconductor. <i>Organic Letters</i> , 2014 , 16, 240-3	6.2	24

309	Highly transparent thin-film transistors using wide-bandgap organic semiconductors and multilayer transparent electrodes. <i>Journal of Information Display</i> , 2014 , 15, 59-63	4.1	3
308	Small band gap polymers incorporating a strong acceptor, thieno[3,2-b]thiophene-2,5-dione, with p-channel and ambipolar charge transport characteristics. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 230	7 ⁷ -2 ¹ 312	25
307	Air-stable, low-voltage organic transistors: High-mobility thienoacene derivatives for unipolar and complementary ring oscillators on flexible substrates 2014 ,		1
306	Transient nature of graphene quantum dot formation via a hydrothermal reaction. <i>RSC Advances</i> , 2014 , 4, 55709-55715	3.7	71
305	Highly oriented polymer semiconductor films compressed at the surface of ionic liquids for high-performance polymeric organic field-effect transistors. <i>Advanced Materials</i> , 2014 , 26, 6430-5	24	60
304	Bias-stress stability of low-voltage p-channel and n-channel organic thin-film transistors on flexible plastic substrates. <i>Organic Electronics</i> , 2014 , 15, 3173-3182	3.5	20
303	All-Polymer Solar Cell with High Near-Infrared Response Based on a Naphthodithiophene Diimide (NDTI) Copolymer. <i>ACS Macro Letters</i> , 2014 , 3, 872-875	6.6	105
302	Organic semiconductors based on [1]benzothieno[3,2-b][1]benzothiophene substructure. <i>Accounts of Chemical Research</i> , 2014 , 47, 1493-502	24.3	357
301	Split-gate organic field-effect transistors for high-speed operation. Advanced Materials, 2014, 26, 2983-	824	29
300	Achieving high efficiency and stability in inverted organic solar cells fabricated by laminated gold leaf as top electrodes. <i>Applied Physics Express</i> , 2014 , 7, 111602	2.4	7
299	5, 10-linked naphthodithiophenes as the building block for semiconducting polymers. <i>Science and Technology of Advanced Materials</i> , 2014 , 15, 024201	7.1	4
298	Low-voltage organic field-effect transistors for flexible electronics 2014 ,		1
297	Effect of Oxygen-Containing Functional Side Chains on the Electronic Properties and Photovoltaic Performances in a Thiophene-Thiazolothiazole Copolymer System. <i>Heteroatom Chemistry</i> , 2014 , 25, 556	-564	5
296	Crystalline conjugated polymers for organic electronics. <i>IOP Conference Series: Materials Science and Engineering</i> , 2014 , 54, 012016	0.4	1
295	The Elusive Ethenediselone, Se=C=C=Se. Australian Journal of Chemistry, 2014 , 67, 1195	1.2	6
294	Low-temperature carrier dynamics in high-mobility organic transistors of alkylated dinaphtho-thienothiophene as investigated by electron spin resonance. <i>Applied Physics Letters</i> , 2014 , 105, 033301	3.4	13
293	Organic Electronics: Towards Colorless Transparent Organic Transistors: Potential of Benzothieno[3,2-b]benzothiophene-Based Wide-Gap Semiconductors (Adv. Mater. 19/2014). <i>Advanced Materials</i> , 2014 , 26, 3163-3163	24	1
292	A Surface Potential Based Organic Thin-Film Transistor Model for Circuit Simulation Verified With DNTT High Performance Test Devices. <i>IEEE Transactions on Semiconductor Manufacturing</i> , 2014 , 27, 159	- 1 68	13

(2013-2014)

291	[1]Benzothieno[3,2-b][1]benzothiophenes- and dinaphtho[2,3-b:2?,3?-f]thieno[3,2-b]thiophene-based organic semiconductors for stable, high-performance organic thin-film transistor materials. <i>Thin Solid Films</i> , 2014 , 554, 13-18	2.2	11
290	EBuilding Blocks for Organic Electronics: Revaluation of Inductive Land Resonance Leffects of Electron Deficient Units. <i>Chemistry of Materials</i> , 2014 , 26, 587-593	9.6	178
289	Naphthodithiophenediimide (NDTI): synthesis, structure, and applications. <i>Journal of the American Chemical Society</i> , 2013 , 135, 11445-8	16.4	145
288	Flexible low-voltage organic transistors with high thermal stability at 250 °C. Advanced Materials, 2013, 25, 3639-44	24	84
287	Droplet manipulation by an external electric field for crystalline film growth. <i>Langmuir</i> , 2013 , 29, 9592-7	74	13
286	Diphenyl derivatives of dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene: organic semiconductors for thermally stable thin-film transistors. <i>ACS Applied Materials & District Materials</i> (2013), 5, 2331-6	9.5	73
285	Consecutive thiophene-annulation approach to Extended thienoacene-based organic semiconductors with [1]benzothieno[3,2-b][1]benzothiophene (BTBT) substructure. <i>Journal of the American Chemical Society</i> , 2013 , 135, 13900-13	16.4	223
284	High-mobility organic thin-film transistors based on a small-molecule semiconductor deposited in vacuum and by solution shearing. <i>Organic Electronics</i> , 2013 , 14, 3213-3221	3.5	84
283	Megahertz operation of flexible low-voltage organic thin-film transistors. <i>Organic Electronics</i> , 2013 , 14, 1516-1520	3.5	62
282	Flexible air-stable three-dimensional polymer field-effect transistors with high output current density. <i>Organic Electronics</i> , 2013 , 14, 2908-2915	3.5	16
281	Anomalous pressure effect in heteroacene organic field-effect transistors. <i>Physical Review Letters</i> , 2013 , 110, 096603	7.4	21
280	Naphthodithiophenes as building units for small molecules to polymers; a case study for in-depth understanding of structureproperty relationships in organic semiconductors. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 1297-1304	7.1	79
279	Thienannulation: Efficient Synthesis of Extended Thienoacenes Applicable to Organic Semiconductors. <i>European Journal of Organic Chemistry</i> , 2013 , 2013, 217-227	3.2	66
278	Ultraviolet photoelectron spectra of 2,7-diphenyl[1]benzothieno[3,2-b][1]benzothiophene and dinaphtho[2,3-b:2?,3?-f]thieno[3,2-b]thiophene. <i>Chemical Physics Letters</i> , 2013 , 563, 55-57	2.5	18
277	5,10-Diborylated naphtho[1,2-c:5,6-c?]bis[1,2,5]thiadiazole: a ready-to-use precursor for the synthesis of high-performance semiconducting polymers. <i>Polymer Chemistry</i> , 2013 , 4, 5224	4.9	16
276	Naphthodithiophene-naphthobisthiadiazole copolymers for solar cells: alkylation drives the polymer backbone flat and promotes efficiency. <i>Journal of the American Chemical Society</i> , 2013 , 135, 8834-7	16.4	290
275	Quinacridone-Diketopyrrolopyrrole-Based Polymers for Organic Field-Effect Transistors. <i>Materials</i> , 2013 , 6, 1061-1071	3.5	11
274	Benchmarking of a surface potential based organic thin-film transistor model against C10-DNTT high performance test devices 2013 ,		3

273	Temperature-independent transport in high-mobility dinaphtho-thieno-thiophene (DNTT) single crystal transistors. <i>Advanced Materials</i> , 2013 , 25, 3478-84	24	115
272	Forming semiconductor/dielectric double layers by one-step spin-coating for enhancing the performance of organic field-effect transistors. <i>Organic Electronics</i> , 2012 , 13, 1146-1151	3.5	33
271	Drastic change of molecular orientation in a thiazolothiazole copolymer by molecular-weight control and blending with PC61BM leads to high efficiencies in solar cells. <i>Advanced Materials</i> , 2012 , 24, 425-30	24	149
270	Electroconductive Dunction Au Nanoparticles. Bulletin of the Chemical Society of Japan, 2012, 85, 957-9	651.1	18
269	A Soluble Dithienotetrathiafulvalene Derivative for Organic Field-effect Transistors. <i>Chemistry Letters</i> , 2012 , 41, 435-437	1.7	2
268	Isomerically pure anthra[2,3-b:6,7-b']-difuran (anti-ADF), -dithiophene (anti-ADT), and -diselenophene (anti-ADS): selective synthesis, electronic structures, and application to organic field-effect transistors. <i>Journal of Organic Chemistry</i> , 2012 , 77, 8099-111	4.2	96
267	[2,2']Bi[naphtho[2,3-b]furanyl]: a versatile organic semiconductor with a furan-furan junction. <i>Chemical Communications</i> , 2012 , 48, 5892-4	5.8	57
266	Orthogonally functionalized naphthodithiophenes: selective protection and borylation. <i>Organic Letters</i> , 2012 , 14, 4718-21	6.2	38
265	High-power three-dimensional polymer FETs. Current Applied Physics, 2012, 12, S92-S95	2.6	3
264	Sheet-Type Flexible Organic Active Matrix Amplifier System Using Pseudo-CMOS Circuits With Floating-Gate Structure. <i>IEEE Transactions on Electron Devices</i> , 2012 , 59, 3434-3441	2.9	83
263	Direct formation of organic semiconducting single crystals by solvent vapor annealing on a polymer base film. <i>Journal of Materials Chemistry</i> , 2012 , 22, 8462		52
262	Anion effects on the cyclobis(paraquat-p-phenylene) host. Chemical Communications, 2012, 48, 5157-9	5.8	17
261	Angular-shaped naphthodifurans, naphtho[1,2-b;5,6-b']- and naphtho[2,1-b;6,5-b']-difuran: are they isoelectronic with chrysene?. <i>Chemical Communications</i> , 2012 , 48, 5671-3	5.8	22
260	Naphthodithiophene-Based Donor-Acceptor Polymers: Versatile Semiconductors for OFETs and OPVs <i>ACS Macro Letters</i> , 2012 , 1, 437-440	6.6	119
259	Organic photovoltaics based on 5-hexylthiophene-fused porphyrazines. <i>Organic Electronics</i> , 2012 , 13, 1975-1980	3.5	9
258	Largely Eextended thienoacenes with internal thieno[3,2-b]thiophene substructures: synthesis, characterization, and organic field-effect transistor applications. <i>Organic Letters</i> , 2012 , 14, 4914-7	6.2	42
257	Organic transistors with high thermal stability for medical applications. <i>Nature Communications</i> , 2012 , 3, 723	17.4	237
256	High mobility organic thin-film transistors on plastic substrate. <i>Current Applied Physics</i> , 2012 , 12, e2-e5	2.6	12

255	3D Organic Field-Effect Transistors: Flexible Three-Dimensional Organic Field-Effect Transistors Fabricated by an Imprinting Technique (Adv. Mater. 38/2012). <i>Advanced Materials</i> , 2012 , 24, 5276-5276	24	
254	Quinacridone-Based Semiconducting Polymers: Implication of Electronic Structure and Orientational Order for Charge Transport Property. <i>Chemistry of Materials</i> , 2012 , 24, 1235-1243	9.6	64
253	Correlation between interdomain carrier hopping and apparent mobility in polycrystalline organic transistors as investigated by electron spin resonance. <i>Physical Review B</i> , 2012 , 85,	3.3	41
252	Controlling the crystal formation in solution-process for organic field-effect transistors with high-performance. <i>Organic Electronics</i> , 2012 , 13, 2975-2984	3.5	17
251	Solution-processed, Self-organized Organic Single Crystal Arrays with Controlled Crystal Orientation. <i>Scientific Reports</i> , 2012 , 2, 393	4.9	8o
250	Borylation on benzo[1,2-b:4,5-b']- and naphtho[1,2-b:5,6-b']dichalcogenophenes: different chalcogene atom effects on borylation reaction depending on fused ring structure. <i>Organic Letters</i> , 2012 , 14, 5448-51	6.2	14
249	Naphtho[2,3-b:6,7-b?]dichalcogenophenes: Syntheses, Characterizations, and Chalcogene Atom Effects on Organic Field-Effect Transistor and Organic Photovoltaic Devices. <i>Chemistry of Materials</i> , 2012 , 24, 190-198	9.6	74
248	Synthesis, characterization, and transistor and solar cell applications of a naphthobisthiadiazole-based semiconducting polymer. <i>Journal of the American Chemical Society</i> , 2012 , 134, 3498-507	16.4	302
247	Flexible low-voltage organic thin-film transistors and circuits based on C10-DNTT. <i>Journal of Materials Chemistry</i> , 2012 , 22, 4273-4277		92
246	Contact resistance and megahertz operation of aggressively scaled organic transistors. <i>Small</i> , 2012 , 8, 73-9	11	196
245	Flexible three-dimensional organic field-effect transistors fabricated by an imprinting technique. <i>Advanced Materials</i> , 2012 , 24, 5212-6, 5276	24	34
244	Synthesis, characterization, and spectroscopic analysis of antiaromatic benzofused metalloporphyrins. <i>Chemistry - A European Journal</i> , 2012 , 18, 3566-81	4.8	22
243	ESR Anisotropy of Organic Semiconductor Molecules: Calculation and Experiment. <i>Materials Research Society Symposia Proceedings</i> , 2012 , 1436, 6		
242	Two Isomeric Didecyl-dinaphtho[2,3-b:2\$'\$,3\$'\$-f]thieno[3,2-b]thiophenes: Impact of Alkylation Positions on Packing Structures and Organic Field Effect Transistor Characteristics. <i>Japanese Journal of Applied Physics</i> , 2012 , 51, 11PD04	1.4	2
241	Facile Syntheses of Anthra[2,3-b]chalcogenophenes. Synthesis, 2012, 44, 2102-2106	2.9	8
240	High-performance organic transistors with high-k dielectrics: A comparative study on solution-processed single crystals and vacuum-deposited polycrystalline films of 2,9-didecyl-dinaphtho[2,3-b:2?,3?-f]thieno[3,2-b]thiophene. <i>Applied Physics Letters</i> , 2012 , 101, 223304	3.4	31
239	Two Isomeric Didecyl-dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophenes: Impact of Alkylation Positions on Packing Structures and Organic Field Effect Transistor Characteristics. <i>Japanese Journal of Applied Physics</i> , 2012 , 51, 11PD04	1.4	11
238	Linear- and angular-shaped naphthodithiophenes: selective synthesis, properties, and application to organic field-effect transistors. <i>Journal of the American Chemical Society</i> , 2011 , 133, 5024-35	16.4	258

237	Dianthra[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DATT): synthesis, characterization, and FET characteristics of new Eextended heteroarene with eight fused aromatic rings. <i>Journal of the American Chemical Society</i> , 2011 , 133, 8732-9	16.4	180
236	Organic Pseudo-CMOS Circuits for Low-Voltage Large-Gain High-Speed Operation. <i>IEEE Electron Device Letters</i> , 2011 , 32, 1448-1450	4.4	48
235	Simple Oligothiophene-Based Dyes for Dye-Sensitized Solar Cells (DSSCs): Anchoring Group Effects on Molecular Properties and Solar Cell Performance. <i>Bulletin of the Chemical Society of Japan</i> , 2011 , 84, 459-465	5.1	17
234	Donor-Acceptor Semiconducting Polymers Based on Thiazole-Containing Fused-Rings for Organic Field-Effect Transistors. <i>Kobunshi Ronbunshu</i> , 2011 , 68, 1-10	O	
233	Efficient Photocurrent Generation at Dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene/C60Bilayer Interface. <i>Applied Physics Express</i> , 2011 , 4, 061602	2.4	12
232	Air-Stable and High-Mobility Organic Semiconductors Based on Heteroarenes for Field-Effect Transistors. <i>Heterocycles</i> , 2011 , 83, 1187	0.8	29
231	Contact doping and ultrathin gate dielectrics for nanoscale organic thin-film transistors. <i>Small</i> , 2011 , 7, 1186-91	11	111
230	A 4 V Operation, Flexible Braille Display Using Organic Transistors, Carbon Nanotube Actuators, and Organic Static Random-Access Memory. <i>Advanced Functional Materials</i> , 2011 , 21, 4019-4027	15.6	109
229	Alkylated dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophenes (C(n)-DNTTs): organic semiconductors for high-performance thin-film transistors. <i>Advanced Materials</i> , 2011 , 23, 1222-5	24	284
228	Solution-processable organic single crystals with bandlike transport in field-effect transistors. <i>Advanced Materials</i> , 2011 , 23, 523-6	24	333
227	Organic electronics on banknotes. Advanced Materials, 2011, 23, 654-8	24	174
226	Patternable solution-crystallized organic transistors with high charge carrier mobility. <i>Advanced Materials</i> , 2011 , 23, 1626-9	24	303
225	Solution-crystallized organic field-effect transistors with charge-acceptor layers: high-mobility and low-threshold-voltage operation in air. <i>Advanced Materials</i> , 2011 , 23, 3309-14	24	143
224	High-speed flexible organic field-effect transistors with a 3D structure. <i>Advanced Materials</i> , 2011 , 23, 3047-51	24	53
223	Thienoacene-based organic semiconductors. <i>Advanced Materials</i> , 2011 , 23, 4347-70	24	743
222	Synthesis and characterization of benzo[1,2-b:3,4-b':5,6-b'']trithiophene (BTT) oligomers. <i>Journal of Organic Chemistry</i> , 2011 , 76, 4061-70	4.2	45
221	Impact of isomeric structures on transistor performances in naphthodithiophene semiconducting polymers. <i>Journal of the American Chemical Society</i> , 2011 , 133, 6852-60	16.4	194
220	Quinoidal Oligothiophenes with (Acyl)cyanomethylene Termini: Synthesis, Characterization, Properties, and Solution Processed n-Channel Organic Field-Effect Transistors Chemistry of Materials, 2011, 23, 795-804	9.6	47

219	General synthesis of dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) derivatives. <i>Organic Letters</i> , 2011 , 13, 3430-3	6.2	83
218	Two-Photon Mediated Three-Photon Fluorescence: Lessons from a Quinoidal Oligothiophene Dimer. <i>Journal of Physical Chemistry Letters</i> , 2011 , 2, 2179-2183	6.4	12
217	Dinaphtho[2,3-b:2?,3?-f]thieno[3,2-b]thiophene (DNTT) thin-film transistors with improved performance and stability. <i>Organic Electronics</i> , 2011 , 12, 1370-1375	3.5	132
216	One-step synthesis of [1]benzothieno[3,2-b][1]benzothiophene from o-chlorobenzaldehyde. <i>Tetrahedron Letters</i> , 2011 , 52, 285-288	2	49
215	Synthesis and characterizations of linear- and angular-shaped naphthodithiophenes for organic semiconductors 2011 ,		2
214	Disordered polyhalide anion effect on the Fermi surface of the incommensurate organic superconductor (MDT-TSF)I0.77Br0.52. <i>Physical Review B</i> , 2011 , 84,	3.3	1
213	Observation of field-induced charge carriers in high-mobility organic transistors of a thienothiophene-based small molecule: Electron spin resonance measurements. <i>Physical Review B</i> , 2011 , 84,	3.3	24
212	Low-voltage organic transistor with subfemtoliter inkjet source-drain contacts. <i>MRS Communications</i> , 2011 , 1, 3-6	2.7	29
211	Spatial control of the threshold voltage of low-voltage organic transistors by microcontact printing of alkyl- and f luoroalkyl-phosphonic acids. <i>MRS Communications</i> , 2011 , 1, 33-36	2.7	7
210	Three-Dimensional Organic Field-Effect Transistors Using Solution-Processed Thin Films of Benzothieno-Benzothiophene Derivatives. <i>Molecular Crystals and Liquid Crystals</i> , 2011 , 539, 58/[398]-62	2/[402]	Ο
210	Three-Dimensional Organic Field-Effect Transistors Using Solution-Processed Thin Films of Benzothieno-Benzothiophene Derivatives. <i>Molecular Crystals and Liquid Crystals</i> , 2011 , 539, 58/[398]-62. Low-voltage, high-mobility organic thin-film transistors with improved stability 2010 ,	2/[402]	9
	Benzothieno-Benzothiophene Derivatives. <i>Molecular Crystals and Liquid Crystals</i> , 2011 , 539, 58/[398]-62		
209	Benzothieno-Benzothiophene Derivatives. <i>Molecular Crystals and Liquid Crystals</i> , 2011 , 539, 58/[398]-62 Low-voltage, high-mobility organic thin-film transistors with improved stability 2010 , Solution-Processed Dioctylbenzothienobenzothiophene-Based Top-Gate Organic Transistors with		9
209	Benzothieno-Benzothiophene Derivatives. <i>Molecular Crystals and Liquid Crystals</i> , 2011 , 539, 58/[398]-62. Low-voltage, high-mobility organic thin-film transistors with improved stability 2010 , Solution-Processed Dioctylbenzothienobenzothiophene-Based Top-Gate Organic Transistors with High Mobility, Low Threshold Voltage, and High Electrical Stability. <i>Applied Physics Express</i> , 2010 , 3, 121. High-mobility semiconducting naphthodithiophene copolymers. <i>Journal of the American Chemical</i>	<i>6</i> 04	9 48 178
209 208 207	Benzothieno-Benzothiophene Derivatives. <i>Molecular Crystals and Liquid Crystals</i> , 2011 , 539, 58/[398]-62. Low-voltage, high-mobility organic thin-film transistors with improved stability 2010 , Solution-Processed Dioctylbenzothienobenzothiophene-Based Top-Gate Organic Transistors with High Mobility, Low Threshold Voltage, and High Electrical Stability. <i>Applied Physics Express</i> , 2010 , 3, 121. High-mobility semiconducting naphthodithiophene copolymers. <i>Journal of the American Chemical Society</i> , 2010 , 132, 5000-1 ((Alkyloxy)carbonyl)cyanomethylene-substituted thienoquinoidal compounds: a new class of soluble n-channel organic semiconductors for air-stable organic field-effect transistors. <i>Journal of</i>	60 1 16.4	9 48 178
209 208 207 206	Benzothieno-Benzothiophene Derivatives. <i>Molecular Crystals and Liquid Crystals</i> , 2011 , 539, 58/[398]-62. Low-voltage, high-mobility organic thin-film transistors with improved stability 2010 , Solution-Processed Dioctylbenzothienobenzothiophene-Based Top-Gate Organic Transistors with High Mobility, Low Threshold Voltage, and High Electrical Stability. <i>Applied Physics Express</i> , 2010 , 3, 121. High-mobility semiconducting naphthodithiophene copolymers. <i>Journal of the American Chemical Society</i> , 2010 , 132, 5000-1 ((Alkyloxy)carbonyl)cyanomethylene-substituted thienoquinoidal compounds: a new class of soluble n-channel organic semiconductors for air-stable organic field-effect transistors. <i>Journal of the American Chemical Society</i> , 2010 , 132, 10453-66 Synthesis, properties, crystal structures, and semiconductor characteristics of naphtho[1,2-b:5,6-b']dithiophene and -diselenophene derivatives. <i>Journal of Organic Chemistry</i> ,	60 1 16.4 16.4	9 48 178 119
209 208 207 206 205	Low-voltage, high-mobility organic thin-film transistors with improved stability 2010, Solution-Processed Dioctylbenzothienobenzothiophene-Based Top-Gate Organic Transistors with High Mobility, Low Threshold Voltage, and High Electrical Stability. <i>Applied Physics Express</i> , 2010, 3, 121 High-mobility semiconducting naphthodithiophene copolymers. <i>Journal of the American Chemical Society</i> , 2010, 132, 5000-1 ((Alkyloxy)carbonyl)cyanomethylene-substituted thienoquinoidal compounds: a new class of soluble n-channel organic semiconductors for air-stable organic field-effect transistors. <i>Journal of the American Chemical Society</i> , 2010, 132, 10453-66 Synthesis, properties, crystal structures, and semiconductor characteristics of naphtho[1,2-b:5,6-b']dithiophene and -diselenophene derivatives. <i>Journal of Organic Chemistry</i> , 2010, 75, 1228-34 Free-electron-like Hall effect in high-mobility organic thin-film transistors. <i>Physical Review B</i> , 2010,	604 16.4 16.4 4.2	9 48 178 119

201	Three Structural Isomers of Dinaphthothieno[3,2-b]thiophenes: Elucidation of Physicochemical Properties, Crystal Structures, and Field-Effect Transistor Characteristics. <i>Bulletin of the Chemical Society of Japan</i> , 2010 , 83, 120-130	5.1	54
200	Flexible low-voltage organic transistors and circuits based on a high-mobility organic semiconductor with good air stability. <i>Advanced Materials</i> , 2010 , 22, 982-5	24	189
199	Benzobisthiazole-based semiconducting copolymers showing excellent environmental stability in high-humidity air. <i>Advanced Materials</i> , 2010 , 22, 4993-7	24	69
198	Quinoidal oligothiophenes: towards biradical ground-state species. <i>Chemistry - A European Journal</i> , 2010 , 16, 470-84	4.8	63
197	Dinaphthopentalenes: Pentalene Derivatives for Organic Thin-Film Transistors. <i>Angewandte Chemie</i> , 2010 , 122, 7894-7898	3.6	56
196	Dinaphthopentalenes: pentalene derivatives for organic thin-film transistors. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 7728-32	16.4	143
195	Thieno[3,4-c]pyrrole-incorporated quinoidal terthiophene with dicyanomethylene termini: synthesis, characterization, and redox properties. <i>Tetrahedron Letters</i> , 2010 , 51, 4375-4377	2	1
194	Facile synthesis of [1]benzothieno[3,2-b]benzothiophene from o-dihalostilbenes. <i>Tetrahedron Letters</i> , 2010 , 51, 5277-5280	2	22
193	Solution-Processible Organic Semiconductors Based on Selenophene-Containing Heteroarenes, 2,7-Dialkyl[1]benzoselenopheno[3,2-b][1]benzoselenophenes (Cn-BSBSs): Syntheses, Properties, Molecular Arrangements, and Field-Effect Transistor Characteristics. <i>Chemistry of Materials</i> , 2009 ,	9.6	85
192	Organic Superconductivity Enhanced by Asymmetric-Anion Random Potential in (MDT-TS)I0.85Br0.41 [MDT-TS = 5H-2-(1,3-diselenole-2-ylidene)-1,3,4,6-tetrathiapentalene]. <i>Chemistry of Materials</i> , 2009 , 21, 3521-3525	9.6	3
191	One-pot synthesis of benzo[b]thiophenes and benzo[b]selenophenes from o-halo-substituted ethynylbenzenes: convenient approach to mono-, bis-, and tris-chalcogenophene-annulated benzenes. <i>Organic Letters</i> , 2009 , 11, 2473-5	6.2	162
190	High-performance dinaphtho-thieno-thiophene single crystal field-effect transistors. <i>Applied Physics Letters</i> , 2009 , 95, 022111	3.4	130
189	Organic superconductors with an incommensurate anion structure. <i>Science and Technology of Advanced Materials</i> , 2009 , 10, 024303	7.1	7
188	Very High Mobility in Solution-Processed Organic Thin-Film Transistors of Highly Ordered [1]Benzothieno[3,2-b]benzothiophene Derivatives. <i>Applied Physics Express</i> , 2009 , 2, 111501	2.4	238
187	5-Hexylthiophene-fused porphyrazines: new soluble phthalocyanines for solution-processed organic electronic devices. <i>Journal of Materials Chemistry</i> , 2009 , 19, 5913		28
186	Air-stable solution-processed ambipolar organic field-effect transistors based on a dicyanomethylene-substituted terheteroquinoid derivative. <i>Chemical Communications</i> , 2009 , 3919-21	5.8	53
185	Unique Molecular Arrangement in Semiconducting Layer and FET Characteristics of Thin Film Transistors Based on 2,6-Dialkylbenzo[1,2-b:4,5-b?]diselenophenes (Cn-BDSs). <i>Chemistry Letters</i> , 2009 , 38, 352-353	1.7	7
184	Molecular Modification of 2,7-Diphenyl[1]benzothieno[3,2-b]benzothiophene (DPh-BTBT) with Diarylamino Substituents: From Crystalline Order to Amorphous State in Evaporated Thin Films.	1.7	5

183	Alkylated 2,6-Bis(dicyanomethylene)-2,6-dihydrobenzo[1,2-b:4,5-b?]dithiophenes: New Soluble n-Channel Organic Semiconductors for Air-stable OFETs. <i>Chemistry Letters</i> , 2009 , 38, 568-569	1.7	44
182	Development of Air stable Organic Semiconductors for p-Channel Thin-film Transistors. <i>Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry</i> , 2009 , 67, 1224-1230	0.2	2
181	Electrical characteristics of single-component ambipolar organic field-effect transistors and effects of air exposure on them. <i>Journal of Applied Physics</i> , 2008 , 103, 094509	2.5	46
180	Fluorescence up-conversion study of excitation energy transport dynamics in oligothiophene-fullerene linked dyads. <i>Journal of Physical Chemistry A</i> , 2008 , 112, 1125-32	2.8	23
179	Raman spectroscopy shows interchain through space charge delocalization in a mixed valence oligothiophene cation and in its pi-dimeric biradicaloid dication. <i>Journal of the American Chemical Society</i> , 2008 , 130, 14028-9	16.4	34
178	Antiferromagnetic ordering of the incommensurate organic superconductor (MDT-TS)(AuI2)0.441 with a high spin-flop field. <i>Physical Review B</i> , 2008 , 77,	3.3	12
177	Giant nonlinear conductivity and spontaneous current oscillation in an incommensurate organic superconductor. <i>Physical Review Letters</i> , 2008 , 100, 037001	7.4	26
176	Synthesis and Characterization of N-Acyl-substituted PyrroloTTF Derivatives and Improved Air-stability of PyrroloTTF-based OFETs. <i>Chemistry Letters</i> , 2008 , 37, 1088-1089	1.7	10
175	2,6-Dialkylbenzo[1,2-b:4,5-b?]dithiophenes (Cn-BDTs) as Soluble Organic Semiconductors for Solution-processed Organic Field-effect Transistors. <i>Chemistry Letters</i> , 2008 , 37, 284-285	1.7	37
174	Molecular Ordering of High-Performance Soluble Molecular Semiconductors and Re-evaluation of Their Field-Effect Transistor Characteristics. <i>Advanced Materials</i> , 2008 , 20, 3388-3392	24	339
173	A high mobility ambipolar field effect transistor using a 2,6-diphenylbenzo[1,2-b:4,5-b?]diselenophene/fullerene double layer. <i>Solid State Communications</i> , 2008 , 145, 114-117	1.6	10
172	Isotropic Uniaxial Strain Effect on the Incommensurate Organic Superconductor: (MDT-TS)(AuI2)0.441. <i>Journal of the Physical Society of Japan</i> , 2008 , 77, 014706	1.5	1
171	Structural Aspects of Iodine-Promoted One-Pot Cyclization of O-Bis(methylthio)stilbenes to Thieno[3,2-b]thiophene Derivatives: Synthetic Trials of Tetrathienoacenes from 1,2-Bis(3-methylthiothiophen-2-yl)ethenes. <i>Heterocycles</i> , 2008 , 76, 583	0.8	3
170	Solution-processible n-channel organic field-effect transistors based on dicyanomethylene-substituted terthienoquinoid derivative. <i>Journal of the American Chemical Society</i> , 2007 , 129, 11684-5	16.4	182
169	Development of N-Alkyl-Substituted Bis(pyrrolo[3,4-d])tetrathiafulvalenes as Organic Semiconductors for Solution-Processible Field-Effect Transistors. <i>Chemistry of Materials</i> , 2007 , 19, 5230-	-8237 -8237	39
168	Synthesis, properties, and structures of benzo[1,2-b:4,5-b']bis[b]benzothiophene and benzo[1,2-b:4,5-b']bis[b]benzoselenophene. <i>Organic Letters</i> , 2007 , 9, 4499-502	6.2	143
167	Highly soluble [1]benzothieno[3,2-b]benzothiophene (BTBT) derivatives for high-performance, solution-processed organic field-effect transistors. <i>Journal of the American Chemical Society</i> , 2007 , 129, 15732-3	16.4	762
166	Facile synthesis of highly pi-extended heteroarenes, dinaphtho[2,3-b:2',3'-f]chalcogenopheno[3,2-b]chalcogenophenes, and their application to field-effect transistors. <i>Journal of the American Chemical Society</i> , 2007 , 129, 2224-5	16.4	734

165	On the biradicaloid nature of long quinoidal oligothiophenes: experimental evidence guided by theoretical studies. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 9057-61	16.4	139
164	On the Biradicaloid Nature of Long Quinoidal Oligothiophenes: Experimental Evidence Guided by Theoretical Studies. <i>Angewandte Chemie</i> , 2007 , 119, 9215-9219	3.6	46
163	Design strategy for air-stable organic semiconductors applicable to high-performance field-effect transistors. <i>Science and Technology of Advanced Materials</i> , 2007 , 8, 273-276	7.1	78
162	FET Characteristics of Dinaphthothienothiophene (DNTT) on Si/SiO2 Substrates with Various Surface-Modifications. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2007 , 20, 57-59	0.7	42
161	Conductive, Magnetic, and Optical Properties of Sterically Hindered Dodecithiophenes. Evidence for the Coexistence of Bipolaron and Dimer. <i>Bulletin of the Chemical Society of Japan</i> , 2007 , 80, 1799-18	8 57	11
160	Development of New Semiconducting Materials for Durable High-performance Air-stable Organic Field-effect Transistors. <i>Chemistry Letters</i> , 2007 , 36, 578-583	1.7	120
159	Syntheses, Structures, and Spectroscopic Properties of Push-Pull Heteroquinoid Compounds. Heterocycles, 2007 , 71, 253	0.8	11
158	Synthesis and Spectral Properties of Tris(Terphenylylpyridine)Iridium and Tris(Tritylphenylpyridine)Iridium Complexes as Novel Electrophosphorescent Materials. <i>Molecular Crystals and Liquid Crystals</i> , 2006 , 455, 373-379	0.5	
157	Charge transfer degree and superconductivity of the incommensurate organic superconductor (MDTIISF)(I3)0.422. <i>Physical Review B</i> , 2006 , 73,	3.3	9
156	Organic Field-Effect Transistors Based on 2,6-Diphenylbenzo [1,2-b:5,4-b?]-Dithiophene and -Diselenophene (iso-DPh-BDXs). <i>Molecular Crystals and Liquid Crystals</i> , 2006 , 455, 361-365	0.5	13
155	Fermi surface of the organic superconductor (MDTBT)(I3)0.417 reconstructed by incommensurate potential. <i>Physical Review B</i> , 2006 , 73,	3.3	11
154	Unusual Electrochemical Response of Oligoalkylthiophene Films: Involvement of Bipolarons. <i>Molecular Crystals and Liquid Crystals</i> , 2006 , 455, 367-372	0.5	
153	Sodium Ion Effect on Photoinduced Electron Transfer of Porphyrin-Crown Ether-Affixed Quaterthiophene-[60]Fullerene Triad as a Gated Molecular Switch. <i>ECS Transactions</i> , 2006 , 2, 51-62	1	1
152	Effects of extension or prevention of pi-conjugation on photoinduced electron transfer processes of ferrocene-oligothiophene-fullerene triads. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 3471-9	2.8	29
151	Synthesis and photophysical properties of two dual oligothiophene-fullerene linkage molecules as photoinduced long-distance charge separation systems. <i>Journal of Organic Chemistry</i> , 2006 , 71, 1761-8	4.2	48
150	2,7-diphenyl[1]benzoselenopheno[3,2-b][1]benzoselenophene as a stable organic semiconductor for a high-performance field-effect transistor. <i>Journal of the American Chemical Society</i> , 2006 , 128, 3044	4-50 ⁴	180
149	2,7-Diphenyl[1]benzothieno[3,2-b]benzothiophene, a new organic semiconductor for air-stable organic field-effect transistors with mobilities up to 2.0 cm2 V(-1) s(-1). <i>Journal of the American Chemical Society</i> , 2006 , 128, 12604-5	16.4	368
148	Changes in electrochemical and optical properties of oligoalkylthiophene film induced by bipolaron formation. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 1529-35	3.4	6

147	Current-induced metallic state in an organic (EDT-TSF)2GaCl4 conductor. <i>Journal of the American Chemical Society</i> , 2006 , 128, 9006-7	16.4	13
146	Hybrid organic semiconductors including chalcogen atoms in pi-conjugated skeletons. Tuning of optical, redox, and vibrational properties by heavy atom conjugation. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 7422-30	2.8	23
145	Synthesis and Photovoltaic Properties of Tetrathiafulvalene®ligothiopheneBullerene Triads. <i>Chemistry Letters</i> , 2006 , 35, 668-669	1.7	13
144	Thin Film Characteristics and FET Performances of Octyl-substituted Long Oligothiophenes. <i>Chemistry Letters</i> , 2006 , 35, 942-943	1.7	10
143	Molecular Modification of 2,6-Diphenylbenzo[1,2-b:4,5-b?]dichalcogenophenes by Introduction of Strong Electron-withdrawing Groups: Conversion from p- to n-Channel OFET Materials. <i>Chemistry Letters</i> , 2006 , 35, 1200-1201	1.7	38
142	Development and Photovoltaic Performance of Oligothiophene-sensitized TiO2Solar Cells. <i>Chemistry Letters</i> , 2006 , 35, 592-593	1.7	41
141	Thermodynamic Study of an Incommensurate Organic Superconductor (MDT-TSF)(AuI2)0.436. Journal of the Physical Society of Japan, 2006 , 75, 074606	1.5	7
140	Synthesis and Properties of Ethylenethiotetra- selenafulvalene (ET-TSF) and Its Conductive Radical Cation Salts. <i>Heterocycles</i> , 2006 , 67, 655	0.8	3
139	2,6-Diarylnaphtho[1,8-bc:5,4-b'c']dithiophenes as new high-performance semiconductors for organic field-effect transistors. <i>Journal of the American Chemical Society</i> , 2005 , 127, 3605-12	16.4	61
138	Synthesis and spectral properties of a highly soluble push-pull type of quinoidal thiophenes. <i>Organic Letters</i> , 2005 , 7, 4313-6	6.2	21
137	Control of photoinduced energy- and electron-transfer steps in zinc porphyrin-oligothiophene-fullerene linked triads with solvent polarity. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 14365-74	3.4	44
136	Syntheses, structures, spectroscopic properties, and pi-dimeric interactions of [n.n]quinquethiophenophanes. <i>Journal of the American Chemical Society</i> , 2005 , 127, 8082-9	16.4	80
135	Polyether-bridged sexithiophene as a complexation-gated molecular wire for intramolecular photoinduced electron transfer. <i>Journal of the American Chemical Society</i> , 2005 , 127, 15372-3	16.4	54
134	Oligothiophene-multifullerene linkage molecules as high performance photovoltaic materials. <i>Synthetic Metals</i> , 2005 , 152, 125-128	3.6	16
133	Facile synthesis, structure, and properties of benzo[1,2-b:4,5-b']dichalcogenophenes. <i>Journal of Organic Chemistry</i> , 2005 , 70, 10569-71	4.2	131
132	Selenium-Containing EConjugated Compounds for Electronic Molecular Materials. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2005 , 180, 873-881	1	15
131	Extensive quinoidal oligothiophenes with dicyanomethylene groups at terminal positions as highly amphoteric redox molecules. <i>Journal of the American Chemical Society</i> , 2005 , 127, 8928-9	16.4	186
130	Anisotropic Three-dimensional Superconductivity of the Incommensurate Organic Superconductor (MDT-ST)(I3)0.417. <i>Journal of the Physical Society of Japan</i> , 2005 , 74, 1529-1533	1.5	7

129	Single-Crystal Field-Effect Transistors Based on Organic Selenium-Containing Semiconductor. Japanese Journal of Applied Physics, 2005 , 44, 3712-3714	1.4	19
128	Fullerene-tethered oligothiophenes as advanced molecular electronics materials. <i>Pure and Applied Chemistry</i> , 2005 , 77, 2003-2010	2.1	19
127	Sub-5fs time-resolved dynamic FranckCondon overlaps associated with the S1-50 stimulated transition in oligothiophene 13-mer. <i>Chemical Physics Letters</i> , 2005 , 409, 224-229	2.5	10
126	Molecular Conductors Based on peri-Ditellurium-Bridged Donors,2,3-DMTTeA and TMTTeN. <i>European Journal of Inorganic Chemistry</i> , 2005 , 2005, 3435-3449	2.3	4
125	A Practical Two-Step Synthesis of Tetraselenafulvalene (TSF). Synthesis, 2005, 2005, 2810-2813	2.9	7
124	Syntheses of 2-(Pentafluorophenyl)thiophene Derivatives via the Palladium-Catalyzed Suzuki Reaction. <i>Synthesis</i> , 2005 , 2005, 1589-1592	2.9	28
123	Structural and transport properties of the incommensurate organic superconductor (MDTBT)(I3)0.417. <i>Physical Review B</i> , 2005 , 71,	3.3	8
122	Superconductivity competing with the incommensurate antiferromagnetic insulating state in the organic conductor (MDT-TS)(AuI2)0.441. <i>Physical Review B</i> , 2005 , 71,	3.3	15
121	Incommensurate structure and the superconducting properties of the organic superconductor (MDT-ST)(I3)0.417. <i>European Physical Journal Special Topics</i> , 2004 , 114, 517-519		2
120	Recent Development of Organic Conductors Containing Selenium Atoms: New Synthetic Methods, Electron Donors, and Conductors. <i>Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry</i> , 2004 , 62, 150-161	0.2	2
119	Molecular Modifications of Methylenedithio-Tetraselenafulvalene (MDT-TSF) and Methylenedithio-Diselenadithiafulvalene (MDT-ST) for Superior Electron Donors. <i>Synthesis</i> , 2004 , 2004, 1315-1320	2.9	3
118	Vapour deposited films of quinoidal biselenophene and bithiophene derivatives as active layers of n-channel organic field-effect transistors. <i>Journal of Materials Chemistry</i> , 2004 , 14, 1367		65
117	An ambipolar organic field-effect transistor using oligothiophene incorporated with two [60]fullerenes. <i>Journal of Materials Chemistry</i> , 2004 , 14, 2840		47
116	A Raman and Computational Study of Two Dithienyl Naphthodithiophenes: ISynthesis and Characterization of New Polymers Showing Low Band Gap Optical and Electroactive Features. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 7611-7619	3.4	4
115	Photoinduced Electron Transfer in Porphyrin-Oligothiophene-Fullerene Linked Triads by Excitation of a Porphyrin Moiety. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 10700-10710	3.4	82
114	Alpha,omega-bis(quinquethienyl)alkanes as a pi-dimer model of polythiophene. <i>Organic Letters</i> , 2004 , 6, 997-1000	6.2	29
113	Pressure-Induced Superconductivity in (MDT-TS)(AuI2)0.441 [MDT-TS = 5H-2-(1,3-diselenol-2-ylidene)-1,3,4,6-tetrathiapentalene]: A New Organic Superconductor Possessing an Incommensurate Anion Lattice. <i>Chemistry of Materials</i> , 2004 , 16, 5120-5123	9.6	24
112	2,6-Diphenylbenzo[1,2-b:4,5-b']dichalcogenophenes: a new class of high-performance semiconductors for organic field-effect transistors. <i>Journal of the American Chemical Society</i> , 2004 , 126, 5084-5	16.4	216

111	Synthesis and photophysical properties of ferrocene-oligothiophene-fullerene triads. <i>Journal of Organic Chemistry</i> , 2004 , 69, 7183-9	4.2	65
110	Synthesis and Photovoltaic Effects of Oligothiophenes Incorporated with Two [60]Fullerenes. <i>Chemistry Letters</i> , 2004 , 33, 654-655	1.7	39
109	Synthesis and Structures of Highly Conducting Charge-Transfer Salts of Selenium Containing TTM-TTP Derivatives. <i>Bulletin of the Chemical Society of Japan</i> , 2004 , 77, 1449-1458	5.1	10
108	Recent Synthetic Advances of Tetrathiafulvalene-Based Organic Conductors. <i>Bulletin of the Chemical Society of Japan</i> , 2004 , 77, 43-58	5.1	69
107	Aminopropyl©lucose Sequentially Grafted Mesoporous Silica Nanocomposite as a Novel Boron Adsorbent. <i>Chemistry Letters</i> , 2004 , 33, 1582-1583	1.7	10
106	Dendrimer-Encapsulated Oligothiophenes. <i>Chemistry Letters</i> , 2004 , 33, 1154-1155	1.7	16
105	Synthesis and Structures of Neutral Crystals and Charge-Transfer Salts of Selenium Containing TMET-TTP Derivatives. <i>Bulletin of the Chemical Society of Japan</i> , 2003 , 76, 2091-2097	5.1	7
104	Oligothiophene/fullerene Dyads as Active Photovoltaic Materials. <i>Chemistry Letters</i> , 2003 , 32, 404-405	1.7	36
103	Electronic state anisotropy and the Fermi surface topology of the incommensurate organic superconducting crystal (MDT-TSF)(AuI(mathsf{_2})) (mathsf{_{0.436}}). European Physical Journal B, 2003, 36, 161-167	1.2	22
102	TTFBorphyrin dyads as novel photoinduced electron transfer systems. <i>Tetrahedron Letters</i> , 2003 , 44, 161-165	2	39
101	Synthesis and spectroscopic properties of a series of beta-blocked long oligothiophenes up to the 96-mer: revaluation of effective conjugation length. <i>Journal of the American Chemical Society</i> , 2003 , 125, 5286-7	16.4	218
100	A general method for the synthesis of alkylenedithio- and bis(alkylenedithio)tetraselenafulvalenes. <i>Journal of Organic Chemistry</i> , 2003 , 68, 5217-24	4.2	26
99	New Organic Superconductors with an Incommensurate Anion Lattice Consisting of Polyhalide Chains (MDT-TSF)Xy (MDT-TSF = Methylenedithiotetraselenafulvalene; $X = Halogen$; $y = 1.271.29$). Chemistry of Materials, 2003 , 15, 3250-3255	9.6	26
98	Organic Superconductors Based on a New Electron Donor, Methylenedithio-diselenadithiafulvalene (MDT-ST). <i>Chemistry of Materials</i> , 2003 , 15, 1225-1227	9.6	28
97	Organic Field-Effect Transistor Using Oligoselenophene as an Active Layer. <i>Chemistry of Materials</i> , 2003 , 15, 6-7	9.6	79
96	Incommensurate anion potential effect on the electronic states of the organic superconductor (MDT-TSF) (AuI2)0.436. <i>Physical Review B</i> , 2003 , 67,	3.3	26
95	Oligo(octithienylene-diethynylene)s as Unprecedentedly Long Conjugated Nanomolecules 2003 , 274		
94	Synthesis and Properties of Nano-Scale Oligothiophenes: From Conducting-Polymer Models to Materials for Molecular Electronics <i>Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry</i> , 2002 , 60, 52-61	0.2	3

93	Novel Conductive Radical Cation Salts Based on Methylenediselenotetraselenafulvalene (MDSe-TSF): A Sign of Superconductivity in E(MDSe-TSF)2Br Below 4 K. <i>Journal of Solid State Chemistry</i> , 2002 , 168, 582-589	3.3	23
92	Structures and Transport Properties of New Molecular Conductors Based on TMEO-ST-TTP. <i>Journal of Solid State Chemistry</i> , 2002 , 168, 608-615	3.3	8
91	Positional Order and Disorder of Symmetric and Unsymmetric BEDT-STF Salts. <i>Journal of Solid State Chemistry</i> , 2002 , 168, 626-631	3.3	6
90	Structures and Properties of Radical Cation Salts of Novel Tetraselenafulvalene Derivatives (BPT-TSF, EDT-PT-TSF, and BEST-TSF) with MX 4 (M = Fe, Ga, X = Cl, Br)-Type Anions. <i>Molecular Crystals and Liquid Crystals</i> , 2002 , 376, 47-52	0.5	1
89	Organic superconductor with an incommensurate anion structure: (MDTIISF)(AuI2)0.44. <i>Physical Review B</i> , 2002 , 65,	3.3	44
88	Synthesis and properties of novel unsymmetrical tetraselenafulvalene donors, EDT-PT-TSF and EDT-PS-TSF. <i>Molecular Crystals and Liquid Crystals</i> , 2002 , 380, 189-195	0.5	2
87	Synthesis, Structures, and Properties of Two Isomeric Naphthodithiophenes and Their Methyl, Methylthio, and 2-Thienyl Derivatives; Application to Conductive Charge-Transfer Complexes and Low-Bandgap Polymers. <i>Bulletin of the Chemical Society of Japan</i> , 2002 , 75, 1795-1805	5.1	21
86	Organic Field-Effect Transistors Using Di(2-thienyl)naphthodithiophenes as Active Layers. <i>Chemistry Letters</i> , 2002 , 31, 958-959	1.7	17
85	Synthesis and Properties of Selenium Containing dmit-type Complexes. <i>Molecular Crystals and Liquid Crystals</i> , 2002 , 379, 65-70	0.5	5
84	Porphyrin-oligothiophene-fullerene triads as an efficient intramolecular electron-transfer system. <i>Organic Letters</i> , 2002 , 4, 309-11	6.2	90
83	Large photocurrent generation of gold electrodes modified with [60]fullerene-linked oligothiophenes bearing a tripodal rigid anchor. <i>Journal of the American Chemical Society</i> , 2002 , 124, 532-3	16.4	150
82	Oligo(octithienylene-diethynylene)s as unprecedentedly long conjugated nanomolecules. <i>Organic Letters</i> , 2002 , 4, 2533-6	6.2	15
81	Synthetic procedure for various selenium-containing electron donors of the bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) type. <i>Journal of Organic Chemistry</i> , 2002 , 67, 4218-27	4.2	35
80	Functional oligothiophenes as advanced molecular electronic materials. <i>Journal of Materials Chemistry</i> , 2002 , 12, 2565-2575		245
79	Synthesis and Properties of a Series of the Longest Oligothiophenes up to the 48-mer. <i>Bulletin of the Chemical Society of Japan</i> , 2001 , 74, 979-988	5.1	89
78	Synthesis, Optical, and Conductive Properties of Long Oligothiophenes and Their Utilization as Molecular Wires. <i>Bulletin of the Chemical Society of Japan</i> , 2001 , 74, 1789-1801	5.1	81
77	Electronic structures of organic salt DMTSA-BF4 using photoelectron spectromicroscopy. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 2001 , 114-116, 1013-1018	1.7	2
76	Synthesis and photophysical properties of [60]fullerene-oligo(thienylene\textbf{Bthynylene}) dyads. Tetrahedron Letters, 2001 , 42, 6877-6881	2	34

75	Methyl and dimethyl derivatives of tetrathionaphthalene and tetraselenonaphthalene as novel electron donors. <i>Heteroatom Chemistry</i> , 2001 , 12, 287-292	1.2	5
74	Synthesis and Properties of Higher-Order Tetrathiafulvalene Oligomers up to the Dodecamer. <i>European Journal of Organic Chemistry</i> , 2001 , 2001, 2983	3.2	11
73	Angewanate Chemie, 2001 , 113, 1130-1139	3.6	
72	Quasi One-Dimensional Organic Superconductor MDT-TSF small middle dotAuI(2) with T(c)=4.5 K at Ambient Pressure This work was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture of Japan. We thank the Cryogenic Center,	16.4	63
71	Effective Synthesis of 1,3-Diselenole-2-selone-4,5-diselenolate (dsis) and its Utilization for the Synthesis of Selenocycle-fused Tetraselenafulvalene (TSF) Derivatives. <i>Synthesis</i> , 2001 , 2001, 1614-1618	2.9	11
70	Synthetic Methods of Selenium- and Tellurium Variants of Tetrathiafulvalene Electron Donors. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2001 , 171, 231-253	1	8
69	Control of electronic states by bandwidth and band filling in organic conductors. <i>Synthetic Metals</i> , 2001 , 120, 979-980	3.6	8
68	Halogen substituted tetraselenafulvalene derivatives. <i>Synthetic Metals</i> , 2001 , 120, 875-876	3.6	9
67	Low temperature Xfay and ESR study of QuasifID DMTCABF4 (C = S, Se) with halffilled band. Synthetic Metals, 2001 , 120, 931-932	3.6	3
66	Spectral properties of the longest oligothiophenes in the oxidation states. <i>Synthetic Metals</i> , 2001 , 119, 413-414	3.6	48
65	Synthesis and properties of novel heterocycle-fusedTTF-type electron donors: bis(propylenethio)tetrathiafulvalene (BPT-TTF),bis(propyleneseleno)tetrathiafulvalene (BPS-TTF), and their tetraselenafulvalene analogues (BPT-TSF and BPS-TSF). Journal of Materials Chemistry,		10
64	Novel tellurium containing fulvalene-type electron donors, triselenatellurafulvalene (TSTeF) and diselenaditellurafulvalene (DSDTeF); synthesis, conductivities and crystal structures of their TCNQ complexes. <i>Journal of Materials Chemistry</i> , 2001 , 11, 2431-2436		9
63	BIS(ethylenethio)tetraselenafulvalene and Related Hybrid Diselenadithiafulvalenes as Novel Electron Donors Forming Highly Conductive Complexes with 7,7,8,8-Tetracyanoquinodimethane. <i>Heterocycles</i> , 2001 , 54, 225	0.8	4
62	Preparation and Photoelectrochemical Properties of Gold Electrodes Modified with		42
	[60]Fullerene-Linked Oligothiophenes. <i>Chemistry Letters</i> , 2000 , 29, 570-571	1.7	43
61	[60] Fullerene-Linked Oligothiophenes. <i>Chemistry Letters</i> , 2000 , 29, 570-571	4.8	15
61	[60] Fullerene-Linked Oligothiophenes. <i>Chemistry Letters</i> , 2000 , 29, 570-571 A flexible cyclophane: design, synthesis, and structure of a multibridged tris-tetrathiafulvalene (TTF) macrocycle. <i>Chemistry - A European Journal</i> , 2000 , 6, 1947-54 Improved Synthesis of Double-Bridged Tetraselenafulvalenophanes and Formation of Their		
	[60] Fullerene-Linked Oligothiophenes. <i>Chemistry Letters</i> , 2000 , 29, 570-571 A flexible cyclophane: design, synthesis, and structure of a multibridged tris-tetrathiafulvalene (TTF) macrocycle. <i>Chemistry - A European Journal</i> , 2000 , 6, 1947-54 Improved Synthesis of Double-Bridged Tetraselenafulvalenophanes and Formation of Their Conductive Radical Cation Salts. <i>European Journal of Organic Chemistry</i> , 2000 , 2000, 3013-3019 The first electrochemically active suppedophanes: bis(tetrathiafulvalene) suppedophanes. <i>Organic</i>	4.8	15

57	Synthesis and spectroscopic properties of. <i>Organic Letters</i> , 2000 , 2, 4197-9	6.2	47
56	Pyrrolo-annelated tetrathiafulvalenes: the parent systems. <i>Journal of Organic Chemistry</i> , 2000 , 65, 5794	-805	118
55	A Novel Tetrathiafulvalene Building Block. <i>Synthesis</i> , 1999 , 1999, 803-810	2.9	14
54	Low-energy optical transitions in organic metal DMTSABF4. Solid State Communications, 1999, 110, 63-6	8 .6	5
53	Application of flash vacuum pyrolysis to the synthesis of sulfur-containing heteroaromatic systems. <i>Tetrahedron Letters</i> , 1999 , 40, 2789-2792	2	34
52	Synthesis and properties of bitetraselenafulvalene. <i>Tetrahedron Letters</i> , 1999 , 40, 5729-5730	2	14
51	One-Pot Synthesis of Heterocycle-Fused 1,3-Diselenole-2-selones as the Key Precursors of Tetraselenafulvalene-Type Electron Donors. <i>Organic Letters</i> , 1999 , 1, 23-26	6.2	16
50	Triphenyleno[1,12-bcd:4,5-b?c?d?:8,9-b?c?d?]trithiophene: the first bowl-shaped heteroaromatic. <i>Chemical Communications</i> , 1999 , 1859-1860	5.8	121
49	Three dimensional metals based on a tellurium-containing donors, TMTTeN and related conductors. <i>Synthetic Metals</i> , 1999 , 103, 1865-1868	3.6	1
48	Synthesis and properties of methylthio substituted ST-TTP derivatives. Synthetic Metals, 1999, 102, 178	1 ₃ .16784	13
48 47	Synthesis and properties of methylthio substituted ST-TTP derivatives. <i>Synthetic Metals</i> , 1999 , 102, 178 Alkylene- or alkylenedithio-linked dimeric tetraselenafulvalenes. <i>Synthetic Metals</i> , 1999 , 102, 1605-1606		3
47	Alkylene- or alkylenedithio-linked dimeric tetraselenafulvalenes. <i>Synthetic Metals</i> , 1999 , 102, 1605-1606	53.6 3.6	3
47 46	Alkylene- or alkylenedithio-linked dimeric tetraselenafulvalenes. <i>Synthetic Metals</i> , 1999 , 102, 1605-1606 Novel selenium variants of BEDT-TTF. <i>Synthetic Metals</i> , 1999 , 102, 1619-1620	53.6 3.6	3
47 46 45	Alkylene- or alkylenedithio-linked dimeric tetraselenafulvalenes. <i>Synthetic Metals</i> , 1999 , 102, 1605-1606 Novel selenium variants of BEDT-TTF. <i>Synthetic Metals</i> , 1999 , 102, 1619-1620 Synthesis and properties of new PDT- and TPDT-TTP analogues. <i>Synthetic Metals</i> , 1999 , 102, 1621-1622 Structural feature of radical cation salts based on TIP and its selenium analogues. <i>Synthetic Metals</i> ,	53.6 3.6 3.6	3 2 6
47 46 45 44	Alkylene- or alkylenedithio-linked dimeric tetraselenafulvalenes. <i>Synthetic Metals</i> , 1999 , 102, 1605-1606 Novel selenium variants of BEDT-TTF. <i>Synthetic Metals</i> , 1999 , 102, 1619-1620 Synthesis and properties of new PDT- and TPDT-TTP analogues. <i>Synthetic Metals</i> , 1999 , 102, 1621-1622 Structural feature of radical cation salts based on TIP and its selenium analogues. <i>Synthetic Metals</i> , 1999 , 102, 1675 Conducting complexes of TTF and TSF derivatives fused with selenium-containing five-membered	53.6 3.6 3.6	3 2 6 5
47 46 45 44 43	Alkylene- or alkylenedithio-linked dimeric tetraselenafulvalenes. <i>Synthetic Metals</i> , 1999 , 102, 1605-1606. Novel selenium variants of BEDT-TTF. <i>Synthetic Metals</i> , 1999 , 102, 1619-1620. Synthesis and properties of new PDT- and TPDT-TTP analogues. <i>Synthetic Metals</i> , 1999 , 102, 1621-1622. Structural feature of radical cation salts based on TIP and its selenium analogues. <i>Synthetic Metals</i> , 1999 , 102, 1675. Conducting complexes of TTF and TSF derivatives fused with selenium-containing five-membered rings. <i>Synthetic Metals</i> , 1999 , 102, 1714-1715.	3.6 3.6 3.6 3.6	3 2 6 5

39	Structures and Properties of (TMEO-ST-TTP)2AsF6. Chemistry Letters, 1999, 28, 859-860	1.7	2
38	Spectroscopic Study of Isostructural Charge-Transfer Salts: Non-metallic DMTTA-BF4and Metallic DMTSA-BF4. <i>Journal of the Physical Society of Japan</i> , 1999 , 68, 3708-3716	1.5	8
37	Synthese und Charakterisierung der ersten doppelt verbrökten Tetraselenafulvalenophane. <i>Angewandte Chemie</i> , 1998 , 110, 640-642	3.6	5
36	Synthesis and Characterization of the First Double-Bridged Tetraselenafulvalenophanes. <i>Angewandte Chemie - International Edition</i> , 1998 , 37, 619-622	16.4	23
35	Novel Stable Metallic Salts Based on a Donor Molecule Containingperi-Ditellurium Bridges, TMTTeN. <i>Inorganic Chemistry</i> , 1998 , 37, 2850-2851	5.1	11
34	Novel Selenocycle-Fused TTF-Type of Electron Donors Forming Conducting Molecular Complexes: Bis(ethyleneseleno)tetrathiafulvalene (BES-TTF), Diselenolotetrathiafulvalene (DS-TTF), and Bis(ethyleneseleno)tetraselenafulvalene (BES-TSF). <i>Journal of Organic Chemistry</i> , 1998 , 63, 8865-8872	4.2	39
33	Developments of Peri-Dichalcogen-Bridged Fused Aromatic Hydrocarbons as Novel Electron Donors Forming Conductive Molecular Complexes. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 1998 , 136, 447-462	1	3
32	Metallic Properties of 1:1 Charge-Transfer Salt, Dimethyltetraselenoanthracene-Tetrafluoroborate (DMTSA-BF4). <i>Journal of the Physical Society of Japan</i> , 1998 , 67, 971-977	1.5	16
31	Syntheses and Properties of 11,11,12,12-Tetracyano-2,6-anthraquinodimethane (TANT) and Its 9,10-Dichloro Derivative as Novel Extensive Electron Acceptors. <i>Bulletin of the Chemical Society of Japan</i> , 1998 , 71, 1431-1435	5.1	14
30	A Convenient Preparation of 1,3-Dithiole-2-thione and 1,3-Diselenole-2-selone Derivatives. <i>Synlett</i> , 1997 , 1997, 319-321	2.2	45
29	Highly Conducting 1:1 Radical Cation Salts: (DMTSA)X With X ? NO3 and BF4. <i>Molecular Crystals and Liquid Crystals</i> , 1997 , 296, 197-204	0.5	9
28	Synthesis and Properties of Bis(ethyleneseleno)tetrathiafulvalene (BES-TTF) and Diselenolotetrathiafulvalene (DS-TTF) as Novel Electron Donors. <i>Chemistry Letters</i> , 1997 , 26, 1091-1092	1.7	12
27	Crystal structures and electrical conductivities of cation-radicalsalts of a tellurium-containing donor: 3,4-dimethylanthra[1,9-cd:4,10-c?d?]bis[1,2]-ditellurole. <i>Chemical Communications</i> , 1997 , 593-594	4 ^{5.8}	8
26	New hybrid tetrachalcogenofulvalenes: diselenaditellurafulvalene and its dimethyl derivative. <i>Chemical Communications</i> , 1997 , 1925	5.8	5
25	Syntheses, Unique Strained Molecular Structures, and Unusual Transannular Electronic Interactions of a Series of Crisscross-Overlapped Tetrathiafulvalenophanes <i>Journal of Organic Chemistry</i> , 1997 , 62, 5567-5574	4.2	36
24	Characterization of the half-filled DMTSA-BF4 by optical and magnetic measurements. <i>Synthetic Metals</i> , 1997 , 84, 633-634	3.6	1
23	Synthesis and properties of trimethylenedithio-bridged tetrathiafulvalenophanes. <i>Synthetic Metals</i> , 1997 , 86, 1891-1892	3.6	8
22	Electrochemical and spectroscopic properties of oligoselenophenes. Synthetic Metals, 1997, 84, 341-34.	23.6	30

21	Two Isomeric Triple-Layered Tetrathiafulvalenophanes: Syntheses, Structures, and Electrochemical Properties. <i>Tetrahedron Letters</i> , 1997 , 38, 3017-3020	2	26
20	Synthesis and Properties of (Propyleneditelluro)tetrathiafulvalene Donors. <i>Tetrahedron Letters</i> , 1997 , 38, 7569-7572	2	5
19	Electric and magnetic properties of a new conducting salt (DMTSA)2Cl (DMTSA = 2,3-dimethyl-tetraselenoanthracene). <i>Synthetic Metals</i> , 1996 , 79, 155-157	3.6	1
18	Designs and Synthesis of Novel Electron Donors of Non-TTF Types and Formation of Their Conducting Molecular Complexes <i>Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry</i> , 1996 , 54, 752-760	0.2	4
17	Dimeric Tetrathiafulvalenes: New electron donors. Advanced Materials, 1996, 8, 203-211	24	117
16	Syntheses, structures and properties of phenanthro[1,10-cd:8,9-c?d?]bis[1,2]-dithiole and -diselenole and their methyl and methylthio derivatives as novel electron donors. <i>Journal of Materials Chemistry</i> , 1995 , 5, 1539-1547		14
15	Crisscross-Overlapped Tetrathiafulvalenophanes. <i>Tetrahedron Letters</i> , 1995 , 36, 5045-5048	2	17
14	Double-Bridged Tetrathiafulvalenophanes as Novel Electron Donors: Syntheses, Structures, and Properties of Three Structural Isomers. <i>Chemistry Letters</i> , 1995 , 24, 735-736	1.7	20
13	Double-Layered Tetrathiafulvalene as a Novel Electron Donor. <i>Chemistry Letters</i> , 1995 , 24, 523-524	1.7	17
12	Crisscross-overlapped tetrathiafulvalenophanes 1995 , 36, 5045-5045		17
11	Naphtho[1,8-bc: 5,4-b?c?]dithiophene: a new heteroarene isoelectronic with pyrene. <i>Journal of the Chemical Society Chemical Communications</i> , 1994 , 1859-1860		8
10	Pyranylidenemethyl- and Thiopyranylidenemethyl-substituted Furans, Thiophenes, andN-Methylpyrroles as Precursors of Organic Metals and Third-order Nonlinear Optical Materials. <i>Chemistry Letters</i> , 1994 , 23, 255-258	1.7	6
9	Highly Conductive 1: 1 Radical Cation Salts of Anthra[1,9-cd: 4,10-c?d?]bis[1,2]dichalcogenoles. <i>Bulletin of the Chemical Society of Japan</i> , 1994 , 67, 766-772	5.1	32
8	11,11,12,12-Tetracyano-2,6-anthraquinodimethane (TANT) as a novel extensive electron acceptor. Journal of the Chemical Society Chemical Communications, 1993, 519		15
7	Facile Preparation and Charge-Transfer Complexes of Naphtho[1,8-bc:4,5-b?c?]dithiophene and 2,5-Dimethyl and Bis(methylthio) Derivatives. <i>Chemistry Letters</i> , 1993 , 22, 365-368	1.7	8
6	Phenanthro[1,10-cd:8,9-c?d?]bis[1,2]-dithiole and -diselenole as novel electron donors. <i>Journal of the Chemical Society Chemical Communications</i> , 1992 , 278-280		5
5	Syntheses and Properties of Dimethyl and Tetramethyl Anthra[1,9-cd: 4,10-c?d?]bis[1,2]dichalcogenoles and Their Charge-Transfer Complexes. <i>Bulletin of the Chemical Society of Japan</i> , 1991 , 64, 2091-2102	5.1	15
4	Dimethyl and tetramethyl derivatives of anthra[1,9-cd:4, 10-c'd']- and naphthaceno[5,6-cd:11,12-c'd']-bis[1,2]dichalcogenoles. <i>Synthetic Metals</i> , 1991 , 42, 2389-2392	3.6	6

LIST OF PUBLICATIONS

3	2,3-Dimethyl and 2,3,6,7-Tetramethyl Derivatives of Anthra[1,9-cd:4,10-c?d?]bis[1,2]dichalcogenoles as New Electron Donors. <i>Chemistry Letters</i> , 1990 , 19, 567-570	1.7	4
2	Selenophenes as Hetero-Analogues of Thiophene-Based Materials321-340		14
1	Highly Electron-Donating Bipyranylidene Derivatives: Potential n-Type Dopants for Organic Thermoelectrics. <i>Advanced Energy and Sustainability Research</i> ,2100084	1.6	1