
Benedetto Piccoli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5267660/publications.pdf Version: 2024-02-01

1 Optimization of vaccination for COVID-19 in the middt of a pandemic. Networks and Heterogeneous 0.6 7 2 Amasure model for the spread of viral infections with mutations. Networks and Heterogeneous 0.5 3 3 Alunifed Model for Entrainment by Circadian Clocks: Dynamic Circadian Integrated Response 1.4 1 4 Managing public transit during a pandemic: The trade-off between safety and mobility. Transportation 3.9 10 a Advanced mathematical methodologies to contrast COVID-19 pandemic. Networks and Heterogeneous 0.5 3 a Advanced mathematical methodologies to contrast COVID-19 pandemic. Networks and Heterogeneous 0.5 1 a Advanced mathematical methodologies to contrast COVID-19 pandemic. Networks and Heterogeneous 0.5 1 a Advanced mathematical methodologies to contrast COVID-19 pandemic. Networks and Heterogeneous 0.5 3 a Advanced mathematical methodologies to contrast COVID-19 pandemic. Networks and Deterogeneous 0.5 3 a Arigorous multi-population multi-lane hybrid traffic model for dissipation of waves via autonomous 1.2 3 a Accomputational modular approach to evaluate 5 (mathrm(NO_ (s))) 5 emissions and ozone production due to welcular traffic. Decrete and Continuous Dynamical Systems - Series B 2021	#	Article	IF	CITATIONS
2 Media, 2022, 17, 427. 0.5 3 3 A Unified Model for Entrainment by Circadian Clocks: Dynamic Circadian Integrated Response 1.4 1 4 Managing public transit during a pandemic: The trade off between safety and mobility. Transportation 3.9 10 5 Advanced mathematical methodologies, 2022, 138, 103592. 3.9 10 6 Arigorous multi-population multi-lane hybrid traffic model for dissipation of waves via autonomous 1.2 3 7 Arigorous multi-population multi-lane hybrid traffic model for dissipation of waves via autonomous 1.2 3 8 Accomputational modular approach to evaluate \$ (mathrm (NO_{(x)})} \$ emissions and azone production due to vehicular traffic. Discrete and Continuous Dynamical Systems. Series B, 2021, . 0.5 3 9 A Two-Step Model of Human Entrainment: A Quantitative Study of Circadian Period and Phase of Entrainment: Builetin of Mathematical Biology, 2021, 35, 12. 0.9 2 10 Multiscale Control of Generic Second Order Traffic Models by Driver Assist Vehicles. Multiscale 0.6 4 11 A Three-Phase Fundamental Diagram from Three Dimensional Traffic Data. Axiams, 2021, 10, 17. 0.9 4 12 History and Future Perspectives on the Discipline of Quantitrative Systems Pharmacology Modeling and 1.3	1		0.5	7
3 Characteristic (4C/RC). Journal of Biological Rhythms, 2022, 37, 202-215. L4 L4 1 4 Managing public transit during a pandemic: The trade-off between safety and mobility. Transportation Research Part C: Emerging Technologies, 2022, 138, 103592. 3.9 10 6 Advanced mathematical methodologies to contrast COVID-19 pandemic. Networks and Heterogeneous 0.5 1 6 Arigorous multi-population multi-lane hybrid traffic model for dissipation of waves via autonomous 1.2 3 7 Are Commercially Implemented Adaptive Cruise Control Systems String Stable?. IEEE Transactions on production due to vehicular traffic. Discret and Continuous Dynamical Systems - Series B, 2021,. 0.5 3 7 Are computational modular approach to evaluate \$ (mathrm(NO_{(X)}) \$ emissions and ozone production due to vehicular traffic. Discret and Continuous Dynamical Systems - Series B, 2021,. 0.5 3 9 A Two Step Model of Human Entrainment: A Quantitative Study of Circadian Period and Phase of Entrainment. Builetim of Mathematical Biology, 2021, 83, 12. 0.9 2 10 Multiscale Control of Ceneric Second Order Traffic Models by Driver-Assist Vehicles. Multiscale 0.6 4 11 A Three-Phase Fundamental Diagram from Three-Dimensional Traffic Data. Axioms, 2021, 10, 17. 0.9 4 12 History and Future Perspectives on the Disc	2		0.5	3
a Research Part C: Emerging Technologies, 2022, 138, 103592. 3.5 10 b Advanced mathematical methodologies to contrast COVID-19 pandemic. Networks and Heterogeneous 0.5 1 c Arigorous multi-population multi-lane hybrid traffic model for dissipation of waves via autonomous 1.2 3 c Arigorous multi-population multi-lane hybrid traffic model for dissipation of waves via autonomous 1.2 3 r Are Commercially Implemented Adaptive Cruise Control Systems String Stable?. IEEE Transactions on 4.7 117 r Accomputational modular approach to evaluate \$ (mathrm{NO_{(x)}})\$ \$ emissions and ozone production due to vehicular traffic. Discrete and Continuous Dynamical Systems - Series B, 2021, . 0.5 3 o Artwo-Step Model of Human Entrainment: A Quantitative Study of Circadian Period and Phase of Entrainment. Builetin of Mathematical Biology, 2021, 83, 12. 0.9 2 10 Multiscale Control of Generic Second Order Traffic Models by Driver-Assist Vehicles. Multiscale 0.6 4 11 A Three-Phase Fundamental Diagram from Three-Dimensional Traffic Data. Axioms, 2021, 10, 17. 0.9 4 12 History and Future Perspectives on the Discipline of Quantitative Systems Pharmacology Modeling and Lina 1.3 44 13 Generalized roinswork of Vehicle Dy	3		1.4	1
9 Media, 2022, 17, 1. 0.00 1 6 Arigorous multi-population multi-lane hybrid traffic model for dissipation of waves via autonomous 1.2 3 6 Arigorous multi-population multi-lane hybrid traffic model for dissipation of waves via autonomous 1.2 3 7 Are Commercially Implemented Adaptive Cruise Control Systems String Stable?. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 6992-7003. 4.7 117 8 A computational modular approach to evaluate S (mathrm [NO_{X}]}) S emissions and ozone production due to vehicular traffic. Discrete and Continuous Dynamical Systems - Series B, 2021, . 0.5 3 9 A Two-Step Model of Human Entrainment: A Quantitative Study of Circadian Period and Phase of Entrainment. Bulletin of Mathematical Biology, 2021, 83, 12. 0.9 2 10 Multiscale Control of Ceneric Second Order Traffic Models by Driver-Assist Vehicles. Multiscale 0.6 4 11 A Three-Phase Fundamental Diagram from Three-Dimensional Traffic Data. Axtoms, 2021, 10, 17. 0.9 4 12 History and Future Perspectives on the Discipline of Quantitative Systems Pharmacology Modeling and Its Applications. Frontiers in Physiology, 2021, 12, 637999. 1.3 44 13 Generalized solutions to bounded-confidence models. Mathematical Models and Methods in Applied 1.7 8 <td>4</td> <td></td> <td>3.9</td> <td>10</td>	4		3.9	10
6 vehicles. Europeán Physical Journal: Special Topics, 2022, 231, 1689-1700. 1.2 3 7 Are Commercially Implemented Adaptive Cruise Control Systems String Stable?. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 6992-7003. 4.7 117 8 A computational modular approach to evaluate \$ {mathrm{NO_{x}}}] \$ emissions and ozone production due to vehicular traffic. Discrete and Continuous Dynamical Systems - Series B, 2021, . 0.5 3 9 A Two-Step Model of Human Entrainment: A Quantitative Study of Circadian Period and Phase of Entrainment. Bulletin of Mathematical Biology, 2021, 83, 12. 0.6 4 10 Multiscale Control of Generic Second Order Traffic Models by Driver-Assist Vehicles. Multiscale 0.6 4 11 A Tree-Phase Fundamental Diagram from Three-Dimensional Traffic Data. Axioms, 2021, 10, 17. 0.9 4 12 History and Future Perspectives on the Discipline of Quantitative Systems Pharmacology Modeling and Its Applications. Frontiers in Physiology, 2021, 12, 637999. 1.3 44 13 Generalized solutions to bounded-confidence models. Mathematical Models and Methods in Applied 1.7 8 14 Mean-field of optimal control problems for hybrid model of multilane traffic., 2021, ,. 1 1 15 Integrated Framework of Vehicle Dynamics, Instabilitites, Energy Models, and Sparse Flow Smoothing Control	5		0.5	1
1ntelligent Transportation Systems, 2021, 22, 6992-7003. 4.7 117 8 A computational modular approach to evaluate \$ {mathrm{NO_{X}}} \$ emissions and ozone production due to vehicular traffic. Discrete and Continuous Dynamical Systems - Series 8, 2021, . 0.5 3 9 A Two-Step Model of Human Entrainment: A Quantitative Study of Circadian Period and Phase of Entrainment. Bulletin of Mathematical Biology, 2021, 83, 12. 0.9 2 10 Multiscale Control of Generic Second Order Traffic Models by Driver-Assist Vehicles. Multiscale 0.6 4 11 A Three-Phase Fundamental Diagram from Three-Dimensional Traffic Data. Axioms, 2021, 10, 17. 0.9 4 12 History and Future Perspectives on the Discipline of Quantitative Systems Pharmacology Modeling and tis Applications. Frontiers in Physiology, 2021, 12, 637999. 1.3 44 13 Generalized solutions to bounded-confidence models. Mathematical Models and Methods in Applied 1.7 8 14 Mean-field of optimal control problems for hybrid model of multilane traffic., 2021, 1 1 15 Integrated Framework of Vehicle Dynamics, Instabilities, Energy Models, and Sparse Flow Smoothing Controllers., 2021, 8 16 A statistical mechanics approach to macroscopic limits of car-following traffic dynamics. International Journal of Non-Linear Mechanics, 2021, 137, 103806. 1.4 2	6	A rigorous multi-population multi-lane hybrid traffic model for dissipation of waves via autonomous vehicles. European Physical Journal: Special Topics, 2022, 231, 1689-1700.	1.2	3
a production due to vehicular traffic. Discrete and Continuous Dynamical Systems - Series B, 2021, . 0.3 3 9 A Two-Step Model of Human Entrainment: A Quantitative Study of Circadian Period and Phase of Entrainment. Bulletin of Mathematical Biology, 2021, 83, 12. 0.9 2 10 Multiscale Control of Generic Second Order Traffic Models by Driver-Assist Vehicles. Multiscale 0.6 4 11 A Three-Phase Fundamental Diagram from Three-Dimensional Traffic Data. Axioms, 2021, 10, 17. 0.9 4 12 History and Future Perspectives on the Discipline of Quantitative Systems Pharmacology Modeling and Lts Applications. Frontiers in Physiology, 2021, 12, 637999. 1.3 44 13 Generalized solutions to bounded-confidence models. Mathematical Models and Methods in Applied 1.7 8 14 Mean-field of optimal control problems for hybrid model of multilane traffic., 2021,, 1 1 15 Integrated Framework of Vehicle Dynamics, Instabilities, Energy Models, and Sparse Flow Smoothing Controllers., 2021,, 1.4 2 16 A statistical mechanics approach to macroscopic limits of car-following traffic dynamics. International Journal of Non-Linear Mechanics, 2021, 137, 103806. 1.4 2	7		4.7	117
9 Entrainment. Bulletin of Mathematical Biology, 2021, 83, 12. 0.9 2 10 Multiscale Control of Generic Second Order Traffic Models by Driver-Assist Vehicles. Multiscale 0.6 4 11 A Three-Phase Fundamental Diagram from Three-Dimensional Traffic Data. Axioms, 2021, 10, 17. 0.9 4 12 History and Future Perspectives on the Discipline of Quantitative Systems Pharmacology Modeling and Its Applications. Frontiers in Physiology, 2021, 12, 637999. 1.3 44 13 Generalized solutions to bounded-confidence models. Mathematical Models and Methods in Applied Sciences, 2021, 31, 1237-1276. 1.7 8 14 Mean-field of optimal control problems for hybrid model of multilane traffic. , 2021, , . 1 1 15 Integrated Framework of Vehicle Dynamics, Instabilities, Energy Models, and Sparse Flow Smoothing Controllers , 2021, 8 16 A statistical mechanics approach to macroscopic limits of car-following traffic dynamics. International Journal of Non-Linear Mechanics, 2021, 137, 103806. 1.4 2	8	A computational modular approach to evaluate \$ {mathrm{NO_{x}}} \$ emissions and ozone production due to vehicular traffic. Discrete and Continuous Dynamical Systems - Series B, 2021, .	0.5	3
10 Modeling and Simulation, 2021, 19, 589-611. 0.6 4 11 A Three-Phase Fundamental Diagram from Three-Dimensional Traffic Data. Axioms, 2021, 10, 17. 0.9 4 12 History and Future Perspectives on the Discipline of Quantitative Systems Pharmacology Modeling and Its Applications. Frontiers in Physiology, 2021, 12, 637999. 1.3 44 13 Generalized solutions to bounded-confidence models. Mathematical Models and Methods in Applied 1.7 8 14 Mean-field of optimal control problems for hybrid model of multilane traffic., 2021, , . 1 1 15 Integrated Framework of Vehicle Dynamics, Instabilities, Energy Models, and Sparse Flow Smoothing Controllers., 2021, , . 8 16 A statistical mechanics approach to macroscopic limits of car-following traffic dynamics. International Journal of Non-Linear Mechanics, 2021, 137, 103806. 1.4 2	9		0.9	2
12 History and Future Perspectives on the Discipline of Quantitative Systems Pharmacology Modeling and Its Applications. Frontiers in Physiology, 2021, 12, 637999. 1.3 44 13 Generalized solutions to bounded-confidence models. Mathematical Models and Methods in Applied Sciences, 2021, 31, 1237-1276. 1.7 8 14 Mean-field of optimal control problems for hybrid model of multilane traffic. , 2021, , . 1 1 15 Integrated Framework of Vehicle Dynamics, Instabilities, Energy Models, and Sparse Flow Smoothing Controllers. , 2021, , . 8 16 A statistical mechanics approach to macroscopic limits of car-following traffic dynamics. International Journal of Non-Linear Mechanics, 2021, 137, 103806. 1.4 2	10		0.6	4
12 Its Applications. Frontiers in Physiology, 2021, 12, 637999. 1.3 44 13 Generalized solutions to bounded-confidence models. Mathematical Models and Methods in Applied 1.7 8 14 Mean-field of optimal control problems for hybrid model of multilane traffic. , 2021, ,. 1 15 Integrated Framework of Vehicle Dynamics, Instabilities, Energy Models, and Sparse Flow Smoothing 8 16 A statistical mechanics approach to macroscopic limits of car-following traffic dynamics. International Journal of Non-Linear Mechanics, 2021, 137, 103806. 1.4 2	11	A Three-Phase Fundamental Diagram from Three-Dimensional Traffic Data. Axioms, 2021, 10, 17.	0.9	4
13 Sciences, 2021, 31, 1237-1276. 1.7 8 14 Mean-field of optimal control problems for hybrid model of multilane traffic. , 2021, , . 1 15 Integrated Framework of Vehicle Dynamics, Instabilities, Energy Models, and Sparse Flow Smoothing 8 16 A statistical mechanics approach to macroscopic limits of car-following traffic dynamics. 1.4 2	12	History and Future Perspectives on the Discipline of Quantitative Systems Pharmacology Modeling and Its Applications. Frontiers in Physiology, 2021, 12, 637999.	1.3	44
15 Integrated Framework of Vehicle Dynamics, Instabilities, Energy Models, and Sparse Flow Smoothing 8 16 A statistical mechanics approach to macroscopic limits of car-following traffic dynamics. 1.4 2	13		1.7	8
15 Controllers. , 2021, , . 8 16 A statistical mechanics approach to macroscopic limits of car-following traffic dynamics. International Journal of Non-Linear Mechanics, 2021, 137, 103806. 1.4 2	14	Mean-field of optimal control problems for hybrid model of multilane traffic. , 2021, , .		1
¹⁶ International Journal of Non-Linear Mechanics, 2021, 137, 103806.	15			8
Mean-Field of Optimal Control Problems for Hybrid Model of Multilane Traffic. , 2021, 5, 1964-1969. 7	16		1.4	2
	17	Mean-Field of Optimal Control Problems for Hybrid Model of Multilane Traffic. , 2021, 5, 1964-1969.		7

18 Synthesis Theory in Optimal Control. , 2021, , 2266-2275.

#	Article	IF	CITATIONS
19	Control of COVID-19 outbreak using an extended SEIR model. Mathematical Models and Methods in Applied Sciences, 2021, 31, 2399-2424.	1.7	15
20	Synthesis Theory in Optimal Control. , 2021, , 1-9.		0
21	Control of Collective Dynamics with Time-Varying Weights. Springer INdAM Series, 2021, , 289-308.	0.4	2
22	Generalized Solutions to Opinion Dynamics Models with Discontinuities. Modeling and Simulation in Science, Engineering and Technology, 2021, , 11-47.	0.4	5
23	Generalized dynamic programming principle and sparse mean-field control problems. Journal of Mathematical Analysis and Applications, 2020, 481, 123437.	0.5	13
24	Habitat-Specific Clock Variation and Its Consequence on Reproductive Fitness. Journal of Biological Rhythms, 2020, 35, 134-144.	1.4	8
25	Quantitative analyses of EGFR localization and trafficking dynamics in the follicular epithelium. Development (Cambridge), 2020, 147, .	1.2	9
26	Model-based assessment of the impact of driver-assist vehicles using kinetic theory. Zeitschrift Fur Angewandte Mathematik Und Physik, 2020, 71, 1.	0.7	18
27	A multiscale model for traffic regulation via autonomous vehicles. Journal of Differential Equations, 2020, 269, 6088-6124.	1.1	30
28	Sparse Control of HegselmannKrause Models: Black Hole and Declustering. SIAM Journal on Control and Optimization, 2019, 57, 2628-2659.	1.1	24
29	Traffic Reconstruction Using Autonomous Vehicles. SIAM Journal on Applied Mathematics, 2019, 79, 1748-1767.	0.8	16
30	Tracking vehicle trajectories and fuel rates in phantom traffic jams: Methodology and data. Transportation Research Part C: Emerging Technologies, 2019, 99, 82-109.	3.9	39
31	String stability of commercial adaptive cruise control vehicles. , 2019, , .		2
32	Real-time distance estimation and filtering of vehicle headways for smoothing of traffic waves. , 2019, , .		5
33	Well-Posedness for Scalar Conservation Laws with Moving Flux Constraints. SIAM Journal on Applied Mathematics, 2019, 79, 641-667.	0.8	10
34	Measure Differential Equations. Archive for Rational Mechanics and Analysis, 2019, 233, 1289-1317.	1.1	15
35	Social dynamics models with time-varying influence. Mathematical Models and Methods in Applied Sciences, 2019, 29, 681-716.	1.7	14
36	Quantifying air quality benefits resulting from few autonomous vehicles stabilizing traffic. Transportation Research, Part D: Transport and Environment, 2019, 67, 351-365.	3.2	79

#	Article	IF	CITATIONS
37	Feedback Control Algorithms for the Dissipation of Traffic Waves with Autonomous Vehicles. Springer Optimization and Its Applications, 2019, , 275-299.	0.6	18
38	Special issue on mathematical methods in systems biology. Networks and Heterogeneous Media, 2019, 14, âº-â±.	0.5	1
39	Stability of metabolic networks via Linear-in-Flux-Expressions. Networks and Heterogeneous Media, 2019, 14, 101-130.	0.5	3
40	Measure dynamics with Probability Vector Fields and sources. Discrete and Continuous Dynamical Systems, 2019, 39, 6207-6230.	0.5	7
41	Equilibria and control of metabolic networks with enhancers and inhibitors. Mathematics in Engineering, 2019, 1, 648-671.	0.5	1
42	Dissipation of stop-and-go waves via control of autonomous vehicles: Field experiments. Transportation Research Part C: Emerging Technologies, 2018, 89, 205-221.	3.9	459
43	Regularization of Chattering Phenomena via Bounded Variation Controls. IEEE Transactions on Automatic Control, 2018, 63, 2046-2060.	3.6	19
44	Measure differential inclusions. , 2018, , .		4
45	Equilibria for Large Metabolic Systems and the LIFE Approach. , 2018, , .		2
46	Measure-Theoretic Models for Crowd Dynamics. Modeling and Simulation in Science, Engineering and Technology, 2018, , 137-165.	0.4	21
47	Riemann solver for a macroscopic double-lane roundabout model. IFAC-PapersOnLine, 2018, 51, 55-60.	0.5	Ο
48	Dissipation of Emergent Traffic Waves in Stop-and-Go Traffic Using a Supervisory Controller. , 2018, , .		8
49	Sparse control to prevent Black Swan clustering in collective dynamics. , 2018, , .		Ο
50	Averaged time-optimal control problem in the space of positive Borel measures. ESAIM - Control, Optimisation and Calculus of Variations, 2018, 24, 721-740.	0.7	8
51	A General BV Existence Result for Conservation Laws with Spatial Heterogeneities. SIAM Journal on Mathematical Analysis, 2018, 50, 2901-2927.	0.9	9
52	Superposition Principle for Differential Inclusions. Lecture Notes in Computer Science, 2018, , 201-209.	1.0	8
53	Two algorithms for a fully coupled and consistently macroscopic PDE-ODEsystem modeling a moving bottleneck on a road. Mathematics in Engineering, 2018, 1, 55-83.	0.5	4
54	Fluvial to torrential phase transition in open canals. Networks and Heterogeneous Media, 2018, 13, 663-690.	0.5	3

#	Article	IF	CITATIONS
55	Priority-based Riemann solver for traffic flow on networks. Communications in Mathematical Sciences, 2018, 16, 185-211.	0.5	9
56	Interaction Network, State Space, and Control in Social Dynamics. Modeling and Simulation in Science, Engineering and Technology, 2017, , 99-140.	0.4	21
57	Multiscale Modeling and Control Architecture for V2X Enabled Traffic Streams. IEEE Transactions on Vehicular Technology, 2017, 66, 4616-4626.	3.9	13
58	Regularity and Lyapunov Stabilization of Weak Entropy Solutions to Scalar Conservation Laws. IEEE Transactions on Automatic Control, 2017, 62, 1620-1635.	3.6	27
59	Modeling birds on wires. Journal of Theoretical Biology, 2017, 415, 102-112.	0.8	5
60	Traffic Regulation via Controlled Speed Limit. SIAM Journal on Control and Optimization, 2017, 55, 2936-2958.	1.1	19
61	Sparse Jurdjevic–Quinn stabilization of dissipative systems. Automatica, 2017, 86, 110-120.	3.0	10
62	A Convex Formulation of Traffic Dynamics on Transportation Networks. SIAM Journal on Applied Mathematics, 2017, 77, 1493-1515.	0.8	2
63	Experimental and Mathematical Analyses Relating Circadian Period and Phase of Entrainment inNeurospora crassa. Journal of Biological Rhythms, 2017, 32, 550-559.	1.4	5
64	Boundary coupling of microscopic and first order macroscopic traffic models. Nonlinear Differential Equations and Applications, 2017, 24, 1.	0.4	6
65	Mean-field sparse Jurdjevic–Quinn control. Mathematical Models and Methods in Applied Sciences, 2017, 27, 1223-1253.	1.7	20
66	Linear-In-Flux-Expressions Methodology: Toward a Robust Mathematical Framework for Quantitative Systems Pharmacology Simulators. Gene Regulation and Systems Biology, 2017, 11, 117762501771141.	2.3	6
67	Optimal synchronization problem for a multi-agent system. Networks and Heterogeneous Media, 2017, 12, 277-295.	0.5	10
68	Optimal control of a multi-level dynamic model for biofuel production. Mathematical Control and Related Fields, 2017, 7, 235-257.	0.6	0
69	Control of reaction-diffusion equations on time-evolving manifolds. , 2016, 2016, 1614-1619.		3
70	Sparse kinetic Jurdjevic-Quinn control for mean-field equations. , 2016, , .		0
71	Sparse feedback stabilization of multi-agent dynamics. , 2016, , .		7
72	Multiscale approaches to crowd dynamics and the reliability of data from experiments. Physics of Life Reviews, 2016, 18, 46-47.	1.5	1

#	Article	IF	CITATIONS
73	On Properties of the Generalized Wasserstein Distance. Archive for Rational Mechanics and Analysis, 2016, 222, 1339-1365.	1.1	42
74	Outflow tracking with variable speed limit. , 2016, , .		0
75	Notes on RKDG Methods for Shallow-Water Equations in Canal Networks. Journal of Scientific Computing, 2016, 68, 1101-1123.	1.1	9
76	Continuity of the path delay operator for dynamic network loading with spillback. Transportation Research Part B: Methodological, 2016, 92, 211-233.	2.8	23
77	Optimal control of a collective migration model. Mathematical Models and Methods in Applied Sciences, 2016, 26, 383-417.	1.7	10
78	Continuous-time link-based kinematic wave model: formulation, solution existence, and well-posedness. Transportmetrica B, 2016, 4, 187-222.	1.4	31
79	A numerical method for the computation of tangent vectors to \$2 imes 2\$ hyperbolic systems of conservation laws. Communications in Mathematical Sciences, 2016, 14, 683-704.	0.5	4
80	Control of the 1D continuous version of the Cucker-Smale model. , 2015, , .		1
81	Developmental Partial Differential Equations. , 2015, , .		0
82	Control to Flocking of the Kinetic CuckerSmale Model. SIAM Journal on Mathematical Analysis, 2015, 47, 4685-4719.	0.9	70
83	Second-order models and traffic data from mobile sensors. Transportation Research Part C: Emerging Technologies, 2015, 52, 32-56.	3.9	42
84	Sparse stabilization and control of alignment models. Mathematical Models and Methods in Applied Sciences, 2015, 25, 521-564.	1.7	83
85	Runge–Kutta Discontinuous Galerkin Method for Traffic Flow Model on Networks. Journal of Scientific Computing, 2015, 63, 233-255.	1.1	21
86	A nonlinear model of opinion formation on the sphere. Discrete and Continuous Dynamical Systems, 2015, 35, 4241-4268.	0.5	45
87	Keep right or left? Towards a cognitive-mathematical model for pedestrians. Networks and Heterogeneous Media, 2015, 10, 559-578.	0.5	2
88	Special issue on modeling and control in social dynamics. Networks and Heterogeneous Media, 2015, 10, i-ii.	0.5	0
89	Flows on networks: recent results and perspectives. EMS Surveys in Mathematical Sciences, 2014, 1, 47-111.	1.5	122

90 Mean-field optimal control by leaders. , 2014, , .

#	Article	IF	CITATIONS
91	Synthesis Theory in Optimal Control. , 2014, , 1-11.		1
92	An Introduction to the Modeling of Crowd Dynamics. Modeling, Simulation and Applications, 2014, , 3-27.	1.3	1
93	An Overview of the Modeling of Crowd Dynamics. Modeling, Simulation and Applications, 2014, , 73-107.	1.3	2
94	Multiscale Modeling by Time-Evolving Measures. Modeling, Simulation and Applications, 2014, , 109-135.	1.3	2
95	On the continuum approximation of the on-and-off signal control on dynamic traffic networks. Transportation Research Part B: Methodological, 2014, 61, 73-97.	2.8	47
96	Mean-field sparse optimal control. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130400.	1.6	70
97	Control of multiscale model for social dynamics. , 2014, , .		0
98	Multiscale Modeling of Pedestrian Dynamics. Modeling, Simulation and Applications, 2014, , .	1.3	129
99	Generalized Wasserstein Distance and its Application to Transport Equations with Source. Archive for Rational Mechanics and Analysis, 2014, 211, 335-358.	1.1	109
100	Traffic modeling and management: Trends and perspectives. Discrete and Continuous Dynamical Systems - Series S, 2014, 7, i-ii.	0.6	0
101	Basic Theory of Measure-Based Models. Modeling, Simulation and Applications, 2014, , 137-168.	1.3	0
102	Psychological Insights. Modeling, Simulation and Applications, 2014, , 53-69.	1.3	0
103	Evolution in Measure Spaces with Wasserstein Distance. Modeling, Simulation and Applications, 2014, , 169-194.	1.3	0
104	Generalizations of the Multiscale Approach. Modeling, Simulation and Applications, 2014, , 195-219.	1.3	0
105	Problems and Simulations. Modeling, Simulation and Applications, 2014, , 29-52.	1.3	Ο
106	Estimating fuel consumption and emissions via traffic data from mobile sensors. , 2013, , .		2
107	Existence of solution to supply chain models based on partial differential equation with discontinuous flux function. Journal of Mathematical Analysis and Applications, 2013, 401, 510-517.	0.5	7
108	Transport Equation with Nonlocal Velocity in Wasserstein Spaces: Convergence of Numerical Schemes. Acta Applicandae Mathematicae, 2013, 124, 73-105.	0.5	73

#	Article	IF	CITATIONS
109	Instantaneous frequency estimation of interfering FM signals through time-scale isolevel curves. Signal Processing, 2013, 93, 882-896.	2.1	9
110	Numerical Schemes for the Optimal Input Flow of a Supply Chain. SIAM Journal on Numerical Analysis, 2013, 51, 2634-2650.	1.1	15
111	Reducing actuator switchings for motion control of autonomous underwater vehicles. , 2013, , .		6
112	COUPLING OF LIGHTHILL–WHITHAM–RICHARDS AND PHASE TRANSITION MODELS. Journal of Hyperbolic Differential Equations, 2013, 10, 577-636.	0.3	10
113	A Multibuffer Model for LWR Road Networks. Complex Networks and Dynamic Systems, 2013, , 143-161.	0.6	13
114	Vehicular Traffic: A Review of Continuum Mathematical Models. , 2013, , 1-37.		1
115	Sparse stabilization and optimal control of the Cucker-Smale model. Mathematical Control and Related Fields, 2013, 3, 447-466.	0.6	79
116	Coupling of microscopic and phase transition models at boundary. Networks and Heterogeneous Media, 2013, 8, 649-661.	0.5	5
117	Special issue on Mathematics of Traffic Flow Modeling, Estimation and Control. Networks and Heterogeneous Media, 2013, 8, i-ii.	0.5	0
118	Optimal distribution of traffic flows in emergency cases. European Journal of Applied Mathematics, 2012, 23, 515-535.	1.4	19
119	How can macroscopic models reveal self-organization in traffic flow?. , 2012, , .		10
120	MODELING CROWD DYNAMICS FROM A COMPLEX SYSTEM VIEWPOINT. Mathematical Models and Methods in Applied Sciences, 2012, 22, .	1.7	116
121	A General Phase Transition Model for Traffic Flow on Networks. Procedia, Social and Behavioral Sciences, 2012, 54, 302-311.	0.5	5
122	Vehicular Traffic: AÂReview of Continuum Mathematical Models. , 2012, , 1748-1770.		7
123	Optimal syntheses for state constrained problems with application to optimization of cancer therapies. Mathematical Control and Related Fields, 2012, 2, 383-398.	0.6	4
124	Optimal input flows for a PDE–ODE model of supply chains. Communications in Mathematical Sciences, 2012, 10, 1225-1240.	0.5	16
125	On the Validity of Fluid-dynamic Models for Data Networks. Journal of Networks, 2012, 7, .	0.4	3
126	A General Phase Transition Model for Vehicular Traffic. SIAM Journal on Applied Mathematics, 2011, 71, 107-127.	0.8	78

#	Article	IF	CITATIONS
127	An Upwind-Euler Scheme for an ODE-PDE Model of Supply Chains. SIAM Journal of Scientific Computing, 2011, 33, 1669-1688.	1.3	19
128	Moving Bottlenecks in Car Traffic Flow: A PDE-ODE Coupled Model. SIAM Journal on Mathematical Analysis, 2011, 43, 50-67.	0.9	80
129	Multiscale Modeling of Granular Flows with Application to Crowd Dynamics. Multiscale Modeling and Simulation, 2011, 9, 155-182.	0.6	169
130	Left invertibility of discrete-time output-quantized systems: the linear case with finite inputs. Mathematics of Control, Signals, and Systems, 2011, 23, 117-139.	1.4	2
131	Effects of anisotropic interactions on the structure of animal groups. Journal of Mathematical Biology, 2011, 62, 569-588.	0.8	36
132	Time-Evolving Measures and Macroscopic Modeling of Pedestrian Flow. Archive for Rational Mechanics and Analysis, 2011, 199, 707-738.	1.1	132
133	A model for biological dynamic networks. Networks and Heterogeneous Media, 2011, 6, 647-663.	0.5	1
134	Sensitivity analysis of permeability parameters for flows on Barcelona networks. Journal of Differential Equations, 2010, 249, 3110-3131.	1.1	14
135	Existence of solutions to Cauchy problems for a mixed continuum-discrete model for supply chains and networks. Journal of Mathematical Analysis and Applications, 2010, 362, 374-386.	0.5	22
136	Fluidsim: A Car Traffic Simulation Prototype Based on FluidDynamic. Algorithms, 2010, 3, 294-310.	1.2	4
137	Optimal syntheses for state constrained problems and optimization of cancer therapies. , 2010, , .		0
138	Left invertibility of discrete systems with finite inputs and quantised output. International Journal of Control, 2010, 83, 798-809.	1.2	4
139	COUPLING OF MICROSCOPIC AND MACROSCOPIC TRAFFIC MODELS AT BOUNDARIES. Mathematical Models and Methods in Applied Sciences, 2010, 20, 2349-2370.	1.7	14
140	ROAD NETWORKS WITH PHASE TRANSITIONS. Journal of Hyperbolic Differential Equations, 2010, 07, 85-106.	0.3	28
141	Modeling self-organization in pedestrians and animal groups from macroscopic and microscopic viewpoints. Modeling and Simulation in Science, Engineering and Technology, 2010, , 337-364.	0.4	28
142	Sensor Deployment for Network-Like Environments. IEEE Transactions on Automatic Control, 2010, 55, 2580-2585.	3.6	8
143	Modelling supply networks with partial differential equations. Quarterly of Applied Mathematics, 2009, 67, 419-440.	0.5	21
144	Conservation laws on complex networks. Annales De L'Institut Henri Poincare (C) Analyse Non Lineaire, 2009, 26, 1925-1951.	0.7	49

#	Article	IF	CITATIONS
145	A fast computation method for time scale signal denoising. Signal, Image and Video Processing, 2009, 3, 63-83.	1.7	22
146	Pedestrian flows in bounded domains with obstacles. Continuum Mechanics and Thermodynamics, 2009, 21, 85-107.	1.4	108
147	Time-varying Riemann solvers for conservation laws on networks. Journal of Differential Equations, 2009, 247, 447-464.	1.1	11
148	Numerical simulations of traffic data via fluid dynamic approach. Applied Mathematics and Computation, 2009, 210, 441-454.	1.4	11
149	Stochastic algorithms for robustness of control performances. Automatica, 2009, 45, 1407-1414.	3.0	6
150	Detection of Gaussian signals via hexagonal sensor networks. International Journal of Mathematical Modelling and Numerical Optimisation, 2009, 1, 39.	0.1	1
151	Vehicular Traffic: AÂReview of Continuum Mathematical Models. , 2009, , 9727-9749.		50
152	On fluido-dynamic models for urban traffic. Networks and Heterogeneous Media, 2009, 4, 107-126.	0.5	15
153	VERTEX FLOW MODELS FOR VEHICULAR TRAFFIC ON NETWORKS. Mathematical Models and Methods in Applied Sciences, 2008, 18, 1299-1315.	1.7	17
154	A Fluid Dynamic Model for Telecommunication Networks with Sources and Destinations. SIAM Journal on Applied Mathematics, 2008, 68, 981-1003.	0.8	24
155	Time Optimal Swing-Up of the Planar Pendulum. IEEE Transactions on Automatic Control, 2008, 53, 1876-1886.	3.6	44
156	Evaluation of HIV-1 and CD4+ T Cell Dynamic Parameters in Patients Treated with Genotypic Resistance Testing-Guided HAART. Current HIV Research, 2008, 6, 363-369.	0.2	3
157	A Fluid Dynamic Model for <i>T</i> -Junctions. SIAM Journal on Mathematical Analysis, 2008, 39, 2016-2032.	0.9	17
158	Left invertibility of discrete systems with finite inputs and quantized output. , 2008, , .		0
159	Deployment of sensors in a network-like environment. , 2008, , .		2
160	A Tracking Algorithm for Car Paths on Road Networks. SIAM Journal on Applied Dynamical Systems, 2008, 7, 510-531.	0.7	28
161	Circulation of car traffic in congested urban areas. Communications in Mathematical Sciences, 2008, 6, 765-784.	0.5	21
162	A Fast Scheme for Multiscale Signal Denoising. Lecture Notes in Computer Science, 2008, , 23-32.	1.0	0

#	Article	IF	CITATIONS
163	Time optimal swing-up of the planar pendulum. , 2007, , .		3
164	OPTIMIZATION OF TRAFFIC ON ROAD NETWORKS. Mathematical Models and Methods in Applied Sciences, 2007, 17, 1587-1617.	1.7	25
165	Hybridization of optimal control problems. International Journal of Control, 2007, 80, 268-280.	1.2	1
166	Determination of the optimal therapeutic protocols in cancer immunotherapy. Mathematical Biosciences, 2007, 209, 1-13.	0.9	45
167	Existence of Solutions for Supply Chain Models Based on Partial Differential Equations. SIAM Journal on Mathematical Analysis, 2007, 39, 160-173.	0.9	59
168	Numerical algorithms for simulations of a traffic model on road networks. Journal of Computational and Applied Mathematics, 2007, 210, 71-77.	1.1	12
169	Cancer immunotherapy, mathematical modeling and optimal control. Journal of Theoretical Biology, 2007, 247, 723-732.	0.8	174
170	HEATH?JARROW?MORTON INTEREST RATE DYNAMICS AND APPROXIMATELY CONSISTENT FORWARD RATE CURVES. Mathematical Finance, 2007, 17, 427-447.	0.9	11
171	On Some Concepts of Generalized Differentials. Set-Valued and Variational Analysis, 2007, 15, 163-183.	0.5	7
172	A Fluid-Dynamic Traffic Model on Road Networks. Archives of Computational Methods in Engineering, 2007, 14, 139-172.	6.0	28
173	Conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2007, 2, 159-179.	0.5	56
174	A continuum-discrete model for supply chains dynamics. Networks and Heterogeneous Media, 2007, 2, 661-694.	0.5	24
175	Feedback Encoding for Efficient Symbolic Control of Dynamical Systems. IEEE Transactions on Automatic Control, 2006, 51, 987-1002.	3.6	19
176	Packet Flow on Telecommunication Networks. SIAM Journal on Mathematical Analysis, 2006, 38, 717-740.	0.9	53
177	Traffic Flow on a Road Network Using the Aw–Rascle Model. Communications in Partial Differential Equations, 2006, 31, 243-275.	1.0	140
178	Optimal vaccine scheduling in cancer immunotherapy. Physica A: Statistical Mechanics and Its Applications, 2006, 370, 672-680.	1.2	29
179	Classification of stable time-optimal controls on 2-manifolds. Journal of Mathematical Sciences, 2006, 135, 3109-3124.	0.1	2
180	Optimal Control in a Model of Dendritic Cell Transfection Cancer Immunotherapy. Bulletin of Mathematical Biology, 2006, 68, 255-274.	0.9	89

#	Article	IF	CITATIONS
181	Fast algorithms for the approximation of a traffic flow model on networks. Discrete and Continuous Dynamical Systems - Series B, 2006, 6, 427-448.	0.5	16
182	Numerical approximations of a traffic flow model on networks. Networks and Heterogeneous Media, 2006, 1, 57-84.	0.5	63
183	Time-Scale Dependencies for Image Compression. Journal of Multimedia, 2006, 1, .	0.3	3
184	Improving Efficiency of Finite Plans by Optimal Choice of Input Sets. Lecture Notes in Computer Science, 2006, , 108-122.	1.0	1
185	Quantization of the rolling-body problem with applications to motion planning. Systems and Control Letters, 2005, 54, 999-1013.	1.3	5
186	Hybrid Necessary Principle. SIAM Journal on Control and Optimization, 2005, 43, 1867-1887.	1.1	96
187	Traffic Flow on a Road Network. SIAM Journal on Mathematical Analysis, 2005, 36, 1862-1886.	0.9	285
188	Pumping a swing by standing and squatting: do children pump time optimally?. IEEE Control Systems, 2005, 25, 48-56.	1.0	37
189	Traffic circles and timing of traffic lights for cars flow. Discrete and Continuous Dynamical Systems - Series B, 2005, 5, 599-630.	0.5	50
190	Source-Destination Flow on a Road Network. Communications in Mathematical Sciences, 2005, 3, 261-283.	0.5	39
191	OPTIMAL STRATEGIES FOR THE ISSUANCES OF PUBLIC DEBT SECURITIES. International Journal of Theoretical and Applied Finance, 2004, 07, 805-822.	0.2	17
192	Safety controls and applications to the Dubins? car. Nonlinear Differential Equations and Applications, 2004, 11, 73-94.	0.4	5
193	Existence theory for nonclassical entropy solutions of scalar conservation laws. Zeitschrift Fur Angewandte Mathematik Und Physik, 2004, 55, 927-945.	0.7	3
194	Hybrid optimal control: Case study of a car with gears. International Journal of Control, 2003, 76, 1272-1284.	1.2	20
195	Hybrid Necessary Principles: An Application to a Car with Gears. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2003, 36, 253-258.	0.4	1
196	On Automaton Recognizability of Abnormal Extremals. SIAM Journal on Control and Optimization, 2002, 40, 1333-1357.	1.1	7
197	On the reachability of quantized control systems. IEEE Transactions on Automatic Control, 2002, 47, 546-563.	3.6	128
198	Regular syntheses and solutions to discontinuous ODEs. ESAIM - Control, Optimisation and Calculus of Variations, 2002, 7, 291-307.	0.7	14

#	Article	IF	CITATIONS
199	SAFETY DRIVING OF THE DUBINS' CAR. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2002, 35, 161-166.	0.4	1
200	Admissible Riemann Solvers for Genuinely Nonlinear p-Systems of Mixed Type. Journal of Differential Equations, 2002, 180, 395-426.	1.1	7
201	Extremal Synthesis for Generic Planar Systems. Journal of Dynamical and Control Systems, 2001, 7, 209-258.	0.4	20
202	On the stabilization performance of some hybrid controls. International Journal of Control, 2001, 74, 1020-1032.	1.2	1
203	Controllability for Discrete Systems with a Finite Control Set. Mathematics of Control, Signals, and Systems, 2001, 14, 173-193.	1.4	31
204	Global Continuous Riemann Solver for Nonlinear Elasticity. Archive for Rational Mechanics and Analysis, 2001, 156, 89-119.	1.1	14
205	Uniqueness of Classical and Nonclassical Solutions for Nonlinear Hyperbolic Systems. Journal of Differential Equations, 2001, 172, 59-82.	1.1	21
206	Morse Properties for the Minimum Time Function on 2-D Manifolds. Journal of Dynamical and Control Systems, 2001, 7, 385-423.	0.4	7
207	The Riemann Problem for Nonlinear Elasticity. , 2001, , 713-722.		1
208	Regular Synthesis and Sufficiency Conditions for Optimality. SIAM Journal on Control and Optimization, 2000, 39, 359-410.	1.1	104
209	Well-posedness of the Cauchy problem for ?×? systems of conservation laws. Memoirs of the American Mathematical Society, 2000, 146, 0-0.	0.5	101
210	Nonclassical Shocks and the Cauchy Problem for Nonconvex Conservation Laws. Journal of Differential Equations, 1999, 151, 345-372.	1.1	15
211	Infinite time regular synthesis. ESAIM - Control, Optimisation and Calculus of Variations, 1998, 3, 381-405.	0.7	3
212	A Baire Category Approach to the Bang-Bang Property. Journal of Differential Equations, 1995, 116, 318-337.	1.1	16
213	Special bang-bang solutions for nonlinear control systems. Nonlinear Differential Equations and Applications, 1995, 2, 323-339.	0.4	2
214	Time-optimal control problems for the swing and the ski. International Journal of Control, 1995, 62, 1409-1429.	1.2	10
215	Bang-bang property for Bolza problems in two dimensions. Journal of Optimization Theory and Applications, 1994, 83, 155-165.	0.8	3