Eric René Morgan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5267313/publications.pdf

Version: 2024-02-01

135 papers

4,636 citations

71061 41 h-index 61 g-index

137 all docs

137 does citations

times ranked

137

3560 citing authors

#	Article	IF	CITATIONS
1	Global change, parasite transmission and disease control: lessons from ecology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160088.	1.8	173
2	Angiostrongylus vasorum: a real heartbreaker. Trends in Parasitology, 2005, 21, 49-51.	1.5	133
3	Practices to optimise gastrointestinal nematode control on sheep, goat and cattle farms in Europe using targeted (selective) treatments. Veterinary Record, 2014, 175, 250-255.	0.2	129
4	Canine pulmonary angiostrongylosis: The influence of climate on parasite distribution. Parasitology International, 2009, 58, 406-410.	0.6	128
5	Recent advances in the diagnosis, impact on production and prediction of (i) Fasciola hepatica (i) in cattle. Parasitology, 2014, 141, 326-335.	0.7	128
6	Increasing importance of anthelmintic resistance in European livestock: creation and meta-analysis of an open database. Parasite, 2020, 27, 69.	0.8	110
7	Helminth egg excretion with regard to age, gender and management practices on UK Thoroughbred studs. Parasitology, 2013, 140, 641-652.	0.7	105
8	Canine angiostrongylosis: an emerging disease in Europe. Journal of Veterinary Emergency and Critical Care, 2010, 20, 98-109.	0.4	98
9	Control of helminth ruminant infections by 2030. Parasitology, 2018, 145, 1655-1664.	0.7	97
10	Saigas on the brink: Multidisciplinary analysis of the factors influencing mass mortality events. Science Advances, 2018, 4, eaao2314.	4.7	92
11	Ruminating on complexity: macroparasites of wildlife and livestock. Trends in Ecology and Evolution, 2004, 19, 181-188.	4.2	91
12	Climate change and parasitic disease: farmer mitigation?. Trends in Parasitology, 2009, 25, 308-313.	1.5	90
13	Prevalence, distribution and risk associated with tick infestation of dogs in Great Britain. Medical and Veterinary Entomology, 2011, 25, 377-384.	0.7	90
14	GLOWORM-FL: A simulation model of the effects of climate and climate change on the free-living stages of gastro-intestinal nematode parasites of ruminants. Ecological Modelling, 2015, 297, 232-245.	1.2	90
15	Anthelmintic efficacy on UK Thoroughbred stud farms. International Journal for Parasitology, 2014, 44, 507-514.	1.3	83
16	Global Change and Helminth Infections in Grazing Ruminants in Europe: Impacts, Trends and Sustainable Solutions. Agriculture (Switzerland), 2013, 3, 484-502.	1.4	82
17	<i>Angiostrongylus vasorum</i> infection in dogs: continuing spread and developments in diagnosis and treatment. Journal of Small Animal Practice, 2010, 51, 616-621.	0.5	76
18	Temperature and the development and survival of infective Toxocara canis larvae. Parasitology Research, 2012, 110, 649-656.	0.6	76

#	Article	IF	CITATIONS
19	Recent advances in the epidemiology, clinical and diagnostic features, and control of canine cardio-pulmonary angiostrongylosis. Veterinary Research, 2014, 45, 92.	1.1	72
20	Identification of firstâ€stage larvae of metastrongyles from dogs. Veterinary Record, 2009, 165, 258-261.	0.2	67
21	Increased prevalence and geographic spread of the cardiopulmonary nematode <i>Angiostrongylus vasorum</i> in fox populations in Great Britain. Parasitology, 2015, 142, 1190-1195.	0.7	67
22	The influence of temperature on the development, hatching and survival of <i>Nematodirus battus </i> larvae. Parasitology, 2008, 135, 269-283.	0.7	65
23	Elucidating the spread of the emerging canid nematode Angiostrongylus vasorum between Palaearctic and Nearctic ecozones. Infection, Genetics and Evolution, 2010, 10, 561-568.	1.0	65
24	A questionnaire study on parasite control practices on UK breeding Thoroughbred studs. Equine Veterinary Journal, 2012, 44, 466-471.	0.9	65
25	Refugia and anthelmintic resistance: Concepts and challenges. International Journal for Parasitology: Drugs and Drug Resistance, 2019, 10, 51-57.	1.4	65
26	Assessing risks of disease transmission between wildlife and livestock: The Saiga antelope as a case study. Biological Conservation, 2006, 131, 244-254.	1.9	64
27	Ultraviolet light increases mortality of nematode larvae and can explain patterns of larval availability at pasture. International Journal for Parasitology, 2009, 39, 1151-1156.	1.3	64
28	Estimating Lyme disease risk using pet dogs as sentinels. Comparative Immunology, Microbiology and Infectious Diseases, 2012, 35, 163-167.	0.7	63
29	<i>Angiostrongylus vasorum</i> from South America and Europe represent distinct lineages. Parasitology, 2009, 136, 107-115.	0.7	61
30	Pneumonia from <i>Angiostrongylus Vasorum</i> Infection in a Red Panda (<i>Ailurus Fulgens) Tj ETQq0 0 0 rgBT</i>	Oyerlock	18 Tf 50 30
31	Generalists at the interface: Nematode transmission between wild and domestic ungulates. International Journal for Parasitology: Parasites and Wildlife, 2014, 3, 242-250.	0.6	58
32	Seroepidemiological survey for canine angiostrongylosis in dogs from Germany and the UK using combined detection of <i>Angiostrongylus vasorum</i> antigen and specific antibodies. Parasitology, 2013, 140, 1442-1450.	0.7	56
33	Climateâ€driven changes to the spatioâ€temporal distribution of the parasitic nematode, <i>Haemonchus contortus,</i> in sheep in Europe. Global Change Biology, 2016, 22, 1271-1285.	4.2	56
34	100 Questions in Livestock Helminthology Research. Trends in Parasitology, 2019, 35, 52-71.	1.5	54
35	Parasite transmission in a migratory multiple host system. Ecological Modelling, 2007, 200, 511-520.	1.2	53
36	Avian retinal oil droplets: dietary manipulation of colour vision?. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 953-962.	1.2	51

#	Article	IF	CITATIONS
37	A cost comparison of faecal egg countâ€directed anthelmintic delivery versus interval programme treatments in horses. Veterinary Record, 2013, 173, 371-371.	0.2	49
38	A questionnaire study of equine gastrointestinal parasite control in <scp>S</scp> cotland. Equine Veterinary Journal, 2014, 46, 25-31.	0.9	49
39	What is a vector?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160085.	1.8	47
40	Wild deer as potential vectors of anthelmintic-resistant abomasal nematodes between cattle and sheep farms. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132985.	1.2	46
41	The influence of water on the migration of infective trichostrongyloid larvae onto grass. Parasitology, 2011, 138, 780-788.	0.7	45
42	Strongyle egg reappearance period after moxidectin treatment and its relationship with management factors in UK equine populations. Veterinary Parasitology, 2017, 237, 70-76.	0.7	44
43	HELMINTHS OF SAIGA ANTELOPE IN KAZAKHSTAN: IMPLICATIONS FOR CONSERVATION AND LIVESTOCK PRODUCTION. Journal of Wildlife Diseases, 2005, 41, 149-162.	0.3	42
44	Parasites of European hedgehogs (Erinaceus europaeus) in Britain: epidemiological study and coprological test evaluation. European Journal of Wildlife Research, 2010, 56, 839-844.	0.7	41
45	Comparison of coprological, immunological and molecular methods for the detection of dogs infected with <i>Angiostrongylus vasorum</i> before and after anthelmintic treatment. Parasitology, 2015, 142, 1270-1277.	0.7	40
46	Improved detection of canine Angiostrongylus vasorum infection using real-time PCR and indirect ELISA. Parasitology Research, 2011, 109, 1577-1583.	0.6	39
47	Variation in the hatching behaviour of Nematodirus battus: Polymorphic bet hedging?. International Journal for Parasitology, 2010, 40, 675-681.	1.3	38
48	Cattle and Nematodes Under Global Change: Transmission Models as an Ally. Trends in Parasitology, 2016, 32, 724-738.	1.5	38
49	Asynchrony in host and parasite phenology may decrease disease risk in livestock under climate warming: <i>Nematodirus battus</i> in lambs as a case study. Parasitology, 2015, 142, 1306-1317.	0.7	37
50	Biology and Epidemiology of Gastrointestinal Nematodes in Cattle. Veterinary Clinics of North America - Food Animal Practice, 2020, 36, 1-15.	0.5	35
51	Distribution of Angiostrongylus vasorum and its gastropod intermediate hosts along the rural–urban gradient in two cities in the United Kingdom, using real time PCR. Parasites and Vectors, 2016, 9, 56.	1.0	33
52	Epidemiological survey of <i>Angiostrongylus vasorum</i> in dogs and slugs around a new endemic focus in Scotland. Veterinary Record, 2015, 177, 46-46.	0.2	31
53	Exploiting parallels between livestock and wildlife: Predicting the impact of climate change on gastrointestinal nematodes in ruminants. International Journal for Parasitology: Parasites and Wildlife, 2014, 3, 209-219.	0.6	30
54	A review of the nest protection hypothesis: does inclusion of fresh green plant material in birds' nests reduce parasite infestation?. Parasitology, 2015, 142, 1016-1023.	0.7	30

#	Article	IF	Citations
55	Uncertain links in host–parasite networks: lessons for parasite transmission in a multi-host system. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160095.	1.8	29
56	Diversity and prevalence of metastrongyloid nematodes infecting the red panda (Ailurus fulgens) in European zoos. Veterinary Parasitology, 2010, 172, 299-304.	0.7	28
57	Angiostrongylus vasorum in wolves in Italy. International Journal for Parasitology: Parasites and Wildlife, 2014, 3, 12-14.	0.6	28
58	A survey of the level of horse owner uptake of evidence-based anthelmintic treatment protocols for equine helminth control in the UK. Veterinary Parasitology, 2019, 274, 108926.	0.7	28
59	The parasitic phase of Ostertagia ostertagi: quantification of the main life history traits through systematic review and meta-analysis. International Journal for Parasitology, 2014, 44, 1091-1104.	1.3	26
60	Angiostrongylosis in Animals and Humans in Europe. Pathogens, 2021, 10, 1236.	1.2	26
61	Nematode control practices on sheep farms following an information campaign aiming to delay anthelmintic resistance. Veterinary Record, 2010, 166, 301-303.	0.2	25
62	Comparison of toltrazuril and sulphadimethoxine in the treatment of intestinal coccidiosis in pet rabbits. Veterinary Record, 2010, 167, 287-290.	0.2	25
63	Parasite epidemiology in a changing world: can molecular phylogeography help us tell the wood from the trees?. Parasitology, 2012, 139, 1924-1938.	0.7	25
64	The maintenance of anthelmintic efficacy in sheep in a Mediterranean climate. Veterinary Parasitology, 2014, 203, 139-143.	0.7	23
65	The basic reproduction quotient (Q0) as a potential spatial predictor of the seasonality of ovine haemonchosis. Geospatial Health, 2015, 9, 333.	0.3	20
66	Attitudes towards worm egg counts and targeted selective treatment against equine cyathostomins. Preventive Veterinary Medicine, 2017, 144, 66-74.	0.7	20
67	Confounding factors affecting faecal egg count reduction as a measure of anthelmintic efficacy. Parasite, 2022, 29, 20.	0.8	19
68	Hatching behaviour of <i>Nematodirus filicollis</i> in a flock co-infected with <i>Nematodirus battus</i> . Parasitology, 2009, 136, 805-811.	0.7	18
69	Predictions of future grazing season length for European dairy, beef and sheep farms based on regression with bioclimatic variables. Journal of Agricultural Science, 2016, 154, 765-781.	0.6	18
70	A mechanistic hydro-epidemiological model of liver fluke risk. Journal of the Royal Society Interface, 2018, 15, 20180072.	1.5	18
71	Epidemiology of Oestrus ovis L. (Diptera: Oestridae) larvae in sheep and goats in Greece. Small Ruminant Research, 2010, 89, 51-56.	0.6	17
72	Modelling the impact of targeted anthelmintic treatment of cattle on dung fauna. Environmental Toxicology and Pharmacology, 2017, 55, 94-98.	2.0	17

#	Article	IF	Citations
73	Overview of Taenia solium cysticercosis in West Africa. Acta Tropica, 2019, 190, 329-338.	0.9	17
74	Brain food: rethinking food-borne toxocariasis. Parasitology, 2022, 149, 1-9.	0.7	17
75	Inappropriate measures of population health for parasitic disease?. Trends in Parasitology, 2009, 25, 393-395.	1.5	16
76	Mixed methods evaluation of targeted selective anthelmintic treatment by resource-poor smallholder goat farmers in Botswana. Veterinary Parasitology, 2015, 214, 80-88.	0.7	16
77	Subconjunctival <i>Dirofilaria repens</i> infection in a dog resident in the UK. Journal of Small Animal Practice, 2018, 59, 50-52.	0.5	16
78	Toxocara: time to let cati â€~out of the bag'. Trends in Parasitology, 2022, 38, 280-289.	1.5	16
79	Anaplasma phagocytophilum infection in a multi-species deer community in the New Forest, England. European Journal of Wildlife Research, 2009, 55, 439-442.	0.7	15
80	Modelling Cooperia oncophora: Quantification of key parameters in the parasitic phase. Veterinary Parasitology, 2016, 223, 111-114.	0.7	15
81	Prediction and attenuation of seasonal spillover of parasites between wild and domestic ungulates in an arid mixedâ€use system. Journal of Applied Ecology, 2018, 55, 1976-1986.	1.9	15
82	Seasonally timed treatment programs for Ascaris lumbricoides to increase impactâ€"An investigation using mathematical models. PLoS Neglected Tropical Diseases, 2018, 12, e0006195.	1.3	15
83	Heterogeneity in helminth infections: factors influencing aggregation in a simple host–parasite system. Parasitology, 2020, 147, 65-77.	0.7	15
84	Understanding the role of wild ruminants in anthelmintic resistance in livestock. Biology Letters, 2022, 18, 20220057.	1.0	15
85	Effect on performance of weanling alpacas following treatments against gastro-intestinal parasites. Veterinary Parasitology, 2013, 198, 244-249.	0.7	14
86	Detail and the devil of on-farm parasite control under climate change. Animal Health Research Reviews, 2013, 14, 138-142.	1.4	14
87	Mapping and modelling helminth infections in ruminants in Europe: experience from GLOWORM. Geospatial Health, 2015, 9, 257.	0.3	14
88	GASTROINTESTINAL PARASITES IN CAPTIVE AND FREE-RANGING BIRDS AND POTENTIAL CROSS-TRANSMISSION IN A ZOO ENVIRONMENT. Journal of Zoo and Wildlife Medicine, 2018, 49, 116-128.	0.3	14
89	Opportunistic bacteria and mass mortality in ungulates: lessons from an extreme event. Ecosphere, 2019, 10, e02671.	1.0	14
90	Use of agro-industrial by-products containing tannins for the integrated control of gastrointestinal nematodes in ruminants. Parasite, 2022, 29, 10.	0.8	14

#	Article	IF	CITATIONS
91	Prevalence and diagnosis of parasites of the stomach and small intestine in horses in southâ€west England. Veterinary Record, 2005, 156, 597-600.	0.2	13
92	FAMACHA $\hat{A} \otimes$: A potential tool for targeted selective treatment of chronic fasciolosis in sheep. Veterinary Parasitology, 2015, 212, 188-192.	0.7	13
93	Analysis of Strongyle Egg Shedding Consistency in Horses and Factors That Affect It. Journal of Equine Veterinary Science, 2018, 60, 113-119.e1.	0.4	13
94	Reduced egg shedding in nematode-resistant ewes and projected epidemiological benefits under climate change. International Journal for Parasitology, 2019, 49, 901-910.	1.3	13
95	Occurrence and seasonality of internal parasite infection in elephants, Loxodonta africana, in the Okavango Delta, Botswana. International Journal for Parasitology: Parasites and Wildlife, 2015, 4, 43-48.	0.6	11
96	Real-time and multiplex real-time polymerase chain reactions for the detection of Bartonella henselaewithin cat flea, Ctenocephalides felis, samples. Medical and Veterinary Entomology, 2010, 24, 449-455.	0.7	10
97	The influence of water and humidity on the hatching of <i>Nematodirus battus</i> eggs. Journal of Helminthology, 2012, 86, 287-292.	0.4	10
98	Canine pulmonary angiostrongylosis: can a worm change its spots?. Veterinary Record, 2014, 175, 116-117.	0.2	10
99	Microclimate has a greater influence than macroclimate on the availability of infective Haemonchus contortus larvae on herbage in a warmed temperate environment. Agriculture, Ecosystems and Environment, 2018, 265, 31-36.	2.5	10
100	Building an ecologically founded disease risk prioritization framework for migratory wildlife species based on contact with livestock. Journal of Applied Ecology, 2021, 58, 1838-1853.	1.9	10
101	Increasing resistance to multiple anthelmintic classes in gastrointestinal nematodes on sheep farms in southwest England. Veterinary Record, 2022, 190, e1531.	0.2	10
102	Seasonal epidemiology of gastrointestinal nematodes of cattle in the northern continental climate zone of western Canada as revealed by internal transcribed spacer-2 ribosomal DNA nemabiome barcoding. Parasites and Vectors, 2021, 14, 604.	1.0	9
103	Identification of immuno-reactive adult Angiostrongylus vasorum proteins using mass spectrometry. Molecular and Biochemical Parasitology, 2011, 180, 56-61.	0.5	7
104	Implications of extreme weather events for risk of fluke infection. Veterinary Record, 2014, 175, 198-200.	0.2	7
105	Predicting Parasite Dynamics in Mixed-Use Trans-Himalayan Pastures to Underpin Management of Cross-Transmission Between Livestock and Bharal. Frontiers in Veterinary Science, 2021, 8, 714241.	0.9	7
106	Investigating parasite dynamics of migratory ungulates for sustaining healthy populations: Application to critically-endangered saiga antelopes Saiga tatarica. Biological Conservation, 2022, 266, 109465.	1.9	7
107	First report demonstrating the presence of Toxocara spp. eggs on vegetables grown in community gardens in Europe. Food and Waterborne Parasitology, 2022, 27, e00158.	1.1	7
108	Removal of tick controls for animals entering the UK. Veterinary Record, 2011, 169, 394-394.	0.2	6

#	Article	IF	CITATIONS
109	Canine and feline lungworm infections in the UK. In Practice, 2017, 39, 298-315.	0.1	6
110	A Qualitative Market Analysis Applied to Mini-FLOTAC and Fill-FLOTAC for Diagnosis of Helminth Infections in Ruminants. Frontiers in Veterinary Science, 2020, 7, 580649.	0.9	6
111	Sustainable anthelmintic use in cattle. Veterinary Record, 2010, 167, 309-309.	0.2	5
112	Controlling nematode infections in sheep: application of HACCP. In Practice, 2018, 40, 334-347.	0.1	5
113	Site-Specific Forage Management of Sericea Lespedeza: Geospatial Technology-Based Forage Quality and Yield Enhancement Model Development. Agriculture (Switzerland), 2020, 10, 419.	1.4	5
114	DNA Footprints: Using Parasites to Detect Elusive Animals, Proof of Principle in Hedgehogs. Animals, 2020, 10, 1420.	1.0	5
115	Free-ranging avifauna as a source of generalist parasites for captive birds in zoological settings: An overview of parasite records and potential for cross-transmission. Journal of Advanced Veterinary and Animal Research, 2020, 7, 482.	0.5	5
116	The development of a qPCR assay to detect tick (Ixodida) DNA and its implementation for the study of tick-borne pathogen transmission. Experimental Parasitology, 2010, 126, 506-509.	0.5	4
117	Relevance of improved epidemiological knowledge to sustainable control ofHaemonchus contortusin Nigeria. Animal Health Research Reviews, 2012, 13, 196-208.	1.4	4
118	Risk factors and predictors of angiostrongylosis in naturally infected dogs in the southeast of England. Companion Animal, 2020, 25, 233-240.	0.0	4
119	Response to resources and parasites depends on health status in extensively grazed sheep. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192905.	1.2	4
120	Comparing two predictive risk models for nematodirosis in Great Britain. Veterinary Record, 2021, 188, e73.	0.2	4
121	Discovering environmental management opportunities for infectious disease control. Scientific Reports, 2021, 11, 6442.	1.6	4
122	Quantifying the Interrelationship between Livestock Infections and Climate Change: Response to Ezenwa et al Trends in Ecology and Evolution, 2021, 36, 576-577.	4.2	4
123	Co-Occurrence of Domestic Dogs and Gastropod Molluscs in Public Dog-Walking Spaces and Implications for Infection with Angiostrongylus vasorum: A Preliminary Study. Animals, 2021, 11, 2577.	1.0	4
124	Getting to the bottom of toxocariasis prevention. Public Health, 2018, 165, 152-153.	1.4	3
125	The latest FAD â€" Faecal antibody detection in cattle. Protocol and results from three UK beef farms naturally infected with gastrointestinal nematodes. Parasitology, 2019, 146, 89-96.	0.7	3
126	A Review of the Impact of Climate Change on the Epidemiology of Gastrointestinal Nematode Infections in Small Ruminants and Wildlife in Tropical Conditions. Pathogens, 2022, 11, 148.	1.2	3

#	Article	IF	CITATIONS
127	The 125â€year life cycle of parasite control. Veterinary Record, 2013, 173, 89-91.	0.2	2
128	An elaborated SIR model for haemonchosis in sheep in South Africa under a targeted selective anthelmintic treatment regime. Preventive Veterinary Medicine, 2016, 134, 160-169.	0.7	2
129	Identifying relationships between multiâ€scale social–ecological factors to explore ungulate health in a Western Kazakhstan rangeland. People and Nature, 2022, 4, 382-399.	1.7	2
130	Detection and diagnosis of dog lungworm larvae and eggs. The Veterinary Nurse, 2011, 2, 350-356.	0.0	1
131	Taeniid and other parasite ova in the faeces of working sheepdogs in southâ€west England. Veterinary Record, 2018, 182, 603-603.	0.2	1
132	Lungworm in cattle: a true survivor. Veterinary Record, 2020, 186, 639-641.	0.2	1
133	Effects of nest-box environment on fledgling success rate and pathogen load. Parasitology, 2022, 149, 1186-1192.	0.7	1
134	Canine angiostrongylosis: an update. The Veterinary Nurse, 2014, 5, 366-370.	0.0	0
135	Addressing vectorborne diseases. Veterinary Record, 2016, 178, 455-456.	0.2	0