Nadia L Zakamska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/526675/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	THE ELEVENTH AND TWELFTH DATA RELEASES OF THE SLOAN DIGITAL SKY SURVEY: FINAL DATA FROM SDSS-III. Astrophysical Journal, Supplement Series, 2015, 219, 12.	7.7	1,877
2	Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe. Astronomical Journal, 2017, 154, 28.	4.7	1,100
3	The First Data Release of the Sloan Digital Sky Survey. Astronomical Journal, 2003, 126, 2081-2086.	4.7	800
4	The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the Extended Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment. Astrophysical Journal, Supplement Series, 2018, 235, 42.	7.7	796
5	A Survey of [CLC][ITAL]z[/ITAL][/CLC] ] 5.7 Quasars in the Sloan Digital Sky Survey. II. Discovery of Three Additional Quasars at [CLC][ITAL]z[/ITAL][/CLC] ] 6. Astronomical Journal, 2003, 125, 1649-1659.	4.7	654
6	The 13th Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-IV Survey Mapping Nearby Galaxies at Apache Point Observatory. Astrophysical Journal, Supplement Series, 2017, 233, 25.	7.7	406
7	Candidate Type II Quasars from the Sloan Digital Sky Survey. I. Selection and Optical Properties of a Sample at 0.3 <z<0.83. 126,="" 2003,="" 2125-2144.<="" astronomical="" journal,="" td=""><td>4.7</td><td>296</td></z<0.83.>	4.7	296
8	Quasar feedback and the origin of radio emission in radio-quiet quasars. Monthly Notices of the Royal Astronomical Society, 2014, 442, 784-804.	4.4	264
9	Observations of feedback from radio-quiet quasars – II. Kinematics of ionized gas nebulae. Monthly Notices of the Royal Astronomical Society, 2013, 436, 2576-2597.	4.4	260
10	SPACE DENSITY OF OPTICALLY SELECTED TYPE 2 QUASARS. Astronomical Journal, 2008, 136, 2373-2390.	4.7	247
11	Active Galactic Nuclei in the Sloan Digital Sky Survey. I. Sample Selection. Astronomical Journal, 2005, 129, 1783-1794.	4.7	199
12	FEEDBACK IN LUMINOUS OBSCURED QUASARS. Astrophysical Journal, 2011, 732, 9.	4.5	189
13	Models of Galaxy Clusters with Thermal Conduction. Astrophysical Journal, 2003, 582, 162-169.	4.5	186
14	Double-peaked Low-Ionization Emission Lines in Active Galactic Nuclei. Astronomical Journal, 2003, 126, 1720-1749.	4.7	182
15	Active Galactic Nuclei in the Sloan Digital Sky Survey. II. Emission-Line Luminosity Function. Astronomical Journal, 2005, 129, 1795-1808.	4.7	174
16	Discovery of extreme [O iii] λ5007 à outflows in high-redshift red quasars. Monthly Notices of the Roy Astronomical Society, 2016, 459, 3144-3160.	al 4.4	161
17	Observations of feedback from radio-quiet quasars – I. Extents and morphologies of ionized gas nebulae. Monthly Notices of the Royal Astronomical Society, 2013, 430, 2327-2345.	4.4	158
18	Quasars Probing Quasars. I. Optically Thick Absorbers near Luminous Quasars. Astrophysical Journal, 2006, 651, 61-83.	4.5	142

#	Article	IF	CITATIONS
19	A SPECTACULAR OUTFLOW IN AN OBSCURED QUASAR. Astrophysical Journal, 2012, 746, 86.	4.5	138
20	Hubble Space Telescope Observations of Mira Variables in the SN Ia Host NGC 1559: An Alternative Candle to Measure the Hubble Constant. Astrophysical Journal, 2020, 889, 5.	4.5	136
21	MERGER-DRIVEN FUELING OF ACTIVE GALACTIC NUCLEI: SIX DUAL AND OF AGNs DISCOVERED WITH <i>CHANDRA</i> AND <i>HUBBLE SPACE TELESCOPE</i> OBSERVATIONS. Astrophysical Journal, 2015, 806, 219.	4.5	135
22	Type II Quasars from the Sloan Digital Sky Survey. V. Imaging Host Galaxies with theHubble Space Telescope. Astronomical Journal, 2006, 132, 1496-1516.	4.7	124
23	Candidate Type II Quasars from the Sloan Digital Sky Survey. III. Spectropolarimetry Reveals Hidden Type I Nuclei. Astronomical Journal, 2005, 129, 1212-1224.	4.7	118
24	Excitation and Propagation of Eccentricity Disturbances in Planetary Systems. Astronomical Journal, 2004, 128, 869-877.	4.7	106
25	Candidate Type II Quasars from the Sloan Digital Sky Survey. II. From Radio to X-Rays. Astronomical Journal, 2004, 128, 1002-1016.	4.7	95
26	Space Telescope and Optical Reverberation Mapping Project. V. Optical Spectroscopic Campaign and Emission-line Analysis for NGC 5548. Astrophysical Journal, 2017, 837, 131.	4.5	93
27	Star formation in quasar hosts and the origin of radio emission in radio-quiet quasars. Monthly Notices of the Royal Astronomical Society, 2016, 455, 4191-4211.	4.4	86
28	Candidate type II quasars at 2 < z < 4.3 in the Sloan Digital Sky Survey III. Monthly Notices of the Royal Astronomical Society, 2013, 435, 3306-3325.	4.4	85
29	Extremely red quasars from SDSS, BOSS and <i>WISE</i> : classification of optical spectra. Monthly Notices of the Royal Astronomical Society, 2015, 453, 3933-3953.	4.4	82
30	Optically Identified BL Lacertae Objects from the Sloan Digital Sky Survey. Astronomical Journal, 2005, 129, 2542-2561.	4.7	79
31	Extremely red quasars in BOSS. Monthly Notices of the Royal Astronomical Society, 2017, 464, 3431-3463.	4.4	79
32	SALT LONG-SLIT SPECTROSCOPY OF LUMINOUS OBSCURED QUASARS: AN UPPER LIMIT ON THE SIZE OF THE NARROW-LINE REGION?. Astrophysical Journal, 2013, 774, 145.	4.5	78
33	Do galaxy global relationships emerge from local ones? The SDSS IV MaNGA surface mass density–metallicity relation. Monthly Notices of the Royal Astronomical Society, 2016, 463, 2513-2522.	4.4	77
34	GEMINI LONG-SLIT OBSERVATIONS OF LUMINOUS OBSCURED QUASARS: FURTHER EVIDENCE FOR AN UPPER LIMIT ON THE SIZE OF THE NARROW-LINE REGION. Astrophysical Journal, 2014, 787, 65.	4.5	65
35	SDSS-IV MaNGA: What Shapes the Distribution of Metals in Galaxies? Exploring the Roles of the Local Gas Fraction and Escape Velocity. Astrophysical Journal, 2018, 852, 74.	4.5	61
36	MID-INFRARED SPECTRA OF OPTICALLY-SELECTED TYPE 2 QUASARS. Astronomical Journal, 2008, 136, 1607-1622.	4.7	60

#	Article	IF	CITATIONS
37	HOST GALAXIES OF LUMINOUS TYPE 2 QUASARS AT <i>z</i> â ¹ /4 0.5. Astrophysical Journal, 2009, 702, 1098-1	1174.5	60
38	Sizes and Kinematics of Extended Narrow-line Regions in Luminous Obscured AGN Selected by Broadband Images. Astrophysical Journal, 2017, 835, 222.	4.5	60
39	EIGHT-DIMENSIONAL MID-INFRARED/OPTICAL BAYESIAN QUASAR SELECTION. Astronomical Journal, 2009, 137, 3884-3899.	4.7	56
40	Hot Self‣imilar Relativistic Magnetohydrodynamic Flows. Astrophysical Journal, 2008, 679, 990-999.	4.5	53
41	ALMA OBSERVATIONS OF A CANDIDATE MOLECULAR OUTFLOW IN AN OBSCURED QUASAR. Astrophysical Journal, 2014, 790, 160.	4.5	52
42	Constraints on the Acceleration of the Solar System from High-Precision Timing. Astronomical Journal, 2005, 130, 1939-1950.	4.7	51
43	FIRST RESULTS FROM THE FAINT INFRARED GRISM SURVEY (FIGS): FIRST SIMULTANEOUS DETECTION OF Lyα EMISSION AND LYMAN BREAK FROM A GALAXY AT zÂ=Â7.51. Astrophysical Journal Letters, 2016, 827, L14.	8.3	50
44	Winds as the origin of radio emission in zÂ=Â2.5 radio-quiet extremely red quasars. Monthly Notices of the Royal Astronomical Society, 2018, 477, 830-844.	4.4	49
45	ERQs are the BOSS of quasar samples: the highest velocity [O iii] quasar outflows. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4126-4148.	4.4	49
46	Similarity of ionized gas nebulae around unobscured and obscured quasars☠Monthly Notices of the Royal Astronomical Society, 2014, 442, 1303-1318.	4.4	48
47	SDSS-IV MaNGA: identification of active galactic nuclei in optical integral field unit surveys. Monthly Notices of the Royal Astronomical Society, 2018, 474, 1499-1514.	4.4	48
48	Type II Quasars from the Sloan Digital Sky Survey. IV.ChandraandXMMâ€NewtonObservations Reveal Heavily Absorbed Sources. Astrophysical Journal, 2006, 637, 147-156.	4.5	46
49	Spectroscopic identification of type 2 quasars at <i>z</i> < 1 in SDSS-III/BOSS. Monthly Notices of the Royal Astronomical Society, 2016, 462, 1603-1615.	4.4	45
50	Evidence of suppression of star formation by quasar-driven winds in gas-rich host galaxies at <i>z</i> < 1?. Monthly Notices of the Royal Astronomical Society, 2016, 461, 3724-3739.	4.4	44
51	Ionized gas outflow signatures in SDSS-IV MaNGA active galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2020, 492, 4680-4696.	4.4	44
52	THE GROWTH OF BLACK HOLES: INSIGHTS FROM OBSCURED ACTIVE GALAXIES. Astrophysical Journal, 2009, 702, 441-459.	4.5	43
53	SpIES: THE SPITZER IRAC EQUATORIAL SURVEY. Astrophysical Journal, Supplement Series, 2016, 225, 1.	7.7	43
54	Observational biases in determining extrasolar planet eccentricities in single-planet systems. Monthly Notices of the Royal Astronomical Society, 2010, , no-no.	4.4	41

#	Article	IF	CITATIONS
55	EXTENDED X-RAY EMISSION FROM A QUASAR-DRIVEN SUPERBUBBLE. Astrophysical Journal, 2014, 788, 54.	4.5	39
56	Composite Spectral Energy Distributions and Infrared–Optical Colors of Type 1 and Type 2 Quasars. Astrophysical Journal, 2017, 849, 53.	4.5	39
57	FIGS—Faint Infrared Grism Survey: Description and Data Reduction. Astrophysical Journal, 2017, 846, 84.	4.5	37
58	Varstrometry for Off-nucleus and Dual Sub-Kpc AGN (VODKA): How Well Centered Are Low-z AGN?. Astrophysical Journal Letters, 2019, 885, L4.	8.3	36
59	The eccentricity distribution of wide binaries and their individual measurements. Monthly Notices of the Royal Astronomical Society, 2022, 512, 3383-3399.	4.4	36
60	SDSS-IV MaNGA: spatially resolved star formation histories and the connection to galaxy physical properties. Monthly Notices of the Royal Astronomical Society, 2018, 480, 2544-2561.	4.4	34
61	Warm molecular hydrogen in outflows from ultraluminous infrared Galaxies. Monthly Notices of the Royal Astronomical Society, 2014, 439, 2701-2716.	4.4	33
62	CONSTRAINING THE DYNAMICAL IMPORTANCE OF HOT GAS AND RADIATION PRESSURE IN QUASAR OUTFLOWS USING EMISSION LINE RATIOS. Astrophysical Journal, 2016, 819, 130.	4.5	33
63	High-redshift Extremely Red Quasars in X-Rays. Astrophysical Journal, 2018, 856, 4.	4.5	33
64	The Clustering of High-redshift (2.9Ââ‰ÂzÂâ‰Â5.1) Quasars in SDSS Stripe 82. Astrophysical Journal, 2018, 85 20.	⁹ , _{4.5}	32
65	Towards a comprehensive picture of powerful quasars, their host galaxies and quasar winds at <i>z</i> â^1⁄4 0.5. Monthly Notices of the Royal Astronomical Society, 2016, 457, 745-763.	4.4	31
66	Host galaxies of high-redshift extremely red and obscured quasars. Monthly Notices of the Royal Astronomical Society, 2019, 489, 497-516.	4.4	31
67	A hidden population of high-redshift double quasars unveiled by astrometry. Nature Astronomy, 2021, 5, 569-574.	10.1	31
68	Varstrometry for Off-nucleus and Dual Subkiloparsec AGN (VODKA): Methodology and Initial Results with Gaia DR2. Astrophysical Journal, 2020, 888, 73.	4.5	30
69	H2 emission arises outside photodissociation regions in ultraluminous infrared galaxies. Nature, 2010, 465, 60-63.	27.8	29
70	AN ARCHIVAL <i>Chandra</i> AND <i>XMM-Newton</i> SURVEY OF TYPE 2 QUASARS. Astrophysical Journal, 2013, 777, 27.	4.5	29
71	Evidence for the Thermal Sunyaev-Zel'dovich Effect Associated with Quasar Feedback. Monthly Notices of the Royal Astronomical Society, 0, , stw344.	4.4	28
72	The size–luminosity relationship of quasar narrow-line regions. Monthly Notices of the Royal Astronomical Society, 2018, 477, 4615-4626.	4.4	28

#	Article	IF	CITATIONS
73	Powerful winds in high-redshift obscured and red quasars. Monthly Notices of the Royal Astronomical Society, 2021, 504, 4445-4459.	4.4	28
74	Giant scattering cones in obscured quasars. Monthly Notices of the Royal Astronomical Society, 2016, 456, 2861-2876.	4.4	27
75	Spectropolarimetry of high-redshift obscured and red quasars. Monthly Notices of the Royal Astronomical Society, 2018, 479, 4936-4957.	4.4	25
76	Varstrometry for Off-nucleus and Dual Subkiloparsec AGN (VODKA): Hubble Space Telescope Discovers Double Quasars. Astrophysical Journal, 2022, 925, 162.	4.5	25
77	Chemical abundances in Seyfert galaxies – V. The discovery of shocked emission outside the AGN ionization axis. Monthly Notices of the Royal Astronomical Society: Letters, 2021, 501, L54-L59.	3.3	24
78	NEAR-INFRARED SPECTRA AND INTRINSIC LUMINOSITIES OF CANDIDATE TYPE II QUASARS AT 2 < <i>z</i> < 3.4. Astrophysical Journal, 2014, 788, 91.	4.5	22
79	Mid-infrared spectroscopic evidence for AGN heating warm molecular gas. Monthly Notices of the Royal Astronomical Society, 2019, 487, 1823-1843.	4.4	22
80	Radiation drag effects on magnetically dominated outflows around compact objects. Monthly Notices of the Royal Astronomical Society, 2004, 347, 587-600.	4.4	21
81	A Gravitational Redshift Measurement of the White Dwarf Mass–Radius Relation. Astrophysical Journal, 2020, 899, 146.	4.5	21
82	Imaging extended emission-line regions of obscured AGN with the Subaru Hyper Suprime-Cam Survey. Monthly Notices of the Royal Astronomical Society, 2018, 480, 2302-2323.	4.4	20
83	Ionized and hot molecular outflows in the inner 500Âpc of NGC 1275. Monthly Notices of the Royal Astronomical Society, 2020, 496, 4857-4873.	4.4	20
84	Lifetime of short-period binaries measured from their Galactic kinematics. Monthly Notices of the Royal Astronomical Society, 2020, 493, 2271-2286.	4.4	20
85	The non-monotonic, strong metallicity dependence of the wide-binary fraction. Monthly Notices of the Royal Astronomical Society, 2021, 501, 4329-4343.	4.4	20
86	A GLIMPSE AT QUASAR HOST GALAXY FAR-UV EMISSION USING DAMPED Lyα's AS NATURAL CORONAGRAPHS. Astrophysical Journal, 2014, 793, 139.	4.5	18
87	Zooming into local active galactic nuclei: The power of combining SDSS-IV MaNGA with higher resolution integral field unit observations. Monthly Notices of the Royal Astronomical Society, 0, , stx246.	4.4	18
88	Observational Constraints on Correlated Star Formation and Active Galactic Nuclei in Late-stage Galaxy Mergers. Astrophysical Journal, 2017, 850, 27.	4.5	18
89	A local leaky-box model for the local stellar surface density–gas surface density–gas phase metallicity relation. Monthly Notices of the Royal Astronomical Society, 2017, 468, 4494-4501.	4.4	16
90	Quantifying the thermal Sunyaev–Zel'dovich effect and excess millimetre emission in quasar environments. Monthly Notices of the Royal Astronomical Society, 2019, 490, 2315-2335	4.4	16

#	Article	IF	CITATIONS
91	Very wide companion fraction from Gaia DR2: A weak or no enhancement for hot Jupiter hosts, and a strong enhancement for contact binaries. Monthly Notices of the Royal Astronomical Society, 2020, 497, 2250-2259.	4.4	15
92	The AGNIFS survey: distribution and excitation of the hot molecular and ionized gas in the inner kpc of nearby AGN hosts. Monthly Notices of the Royal Astronomical Society, 2021, 504, 3265-3283.	4.4	15
93	Variability, periodicity, and contact binaries in <i>WISE</i> . Monthly Notices of the Royal Astronomical Society, 2021, 503, 3975-3991.	4.4	15
94	Extrasolar Planet Orbits and Eccentricities. AIP Conference Proceedings, 2004, , .	0.4	13
95	Computational tools for the spectroscopic analysis of white dwarfs. Monthly Notices of the Royal Astronomical Society, 2020, 497, 2688-2698.	4.4	13
96	Active galactic nuclei winds as the origin of the H2 emission excess in nearby galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 491, 1518-1529.	4.4	12
97	Multiphase Outflows in High-redshift Quasar Host Galaxies. Astrophysical Journal, 2021, 923, 59.	4.5	12
98	Probing the inner circumgalactic medium and quasar illumination around the reddest â€~extremely red quasar'. Monthly Notices of the Royal Astronomical Society, 2022, 515, 1624-1643.	4.4	12
99	Wide Twin Binaries are Extremely Eccentric: Evidence of Twin Binary Formation in Circumbinary Disks. Astrophysical Journal Letters, 2022, 933, L32.	8.3	12
100	A Two-dimensional Spectroscopic Study of Emission-line Galaxies in the Faint Infrared Grism Survey (FIGS). I. Detection Method and Catalog. Astrophysical Journal, 2018, 868, 61.	4.5	11
101	The Mira-based Distance to the Galactic Center. Astrophysical Journal, 2018, 865, 47.	4.5	11
102	Downsizing of star formation measured from the clustered infrared background correlated with quasars. Monthly Notices of the Royal Astronomical Society, 2018, 480, 149-181.	4.4	10
103	A 99 minute Double-lined White Dwarf Binary from SDSS-V. Astrophysical Journal, 2021, 921, 160.	4.5	10
104	Sensitive radio survey of obscured quasar candidates. Monthly Notices of the Royal Astronomical Society, 2016, 463, 3056-3073.	4.4	9
105	Morphology of AGN emission-line regions in SDSS-IV MaNGA survey. Monthly Notices of the Royal Astronomical Society, 2018, 478, 3614-3626.	4.4	9
106	X-ray analysis of SDSS J165202.60+172852.4, an obscured quasar with outflows at peak galaxy formation epoch. Monthly Notices of the Royal Astronomical Society, 2021, 502, 3769-3779.	4.4	9
107	Evidence that emission and absorption outflows in quasars are related. Monthly Notices of the Royal Astronomical Society, 2020, 495, 305-320.	4.4	8
108	Buckling Bars in Nearly Face-on Galaxies Observed with MaNGA. Astrophysical Journal, 2021, 909, 125.	4.5	7

#	Article	IF	CITATIONS
109	Spatially Resolved UV Diagnostics of AGN Feedback: Radiation Pressure Dominates in a Prototypical Quasar-driven Superwind. Astrophysical Journal Letters, 2020, 890, L28.	8.3	6
110	Enhancement of double-close-binary quadruples. Monthly Notices of the Royal Astronomical Society, 2022, 511, 3881-3894.	4.4	6
111	Spectrophotometric Redshifts in the Faint Infrared Grism Survey: Finding Overdensities of Faint Galaxies. Astrophysical Journal, 2018, 856, 116.	4.5	5
112	The Impact of Low-luminosity AGNs on Their Host Galaxies: A Radio and Optical Investigation of the Kiloparsec-scale Outflow in MaNGA 1-166919. Astrophysical Journal, 2021, 916, 102.	4.5	5
113	Wide binaries from the H3 survey: the thick disc and halo have similar wide binary fractions. Monthly Notices of the Royal Astronomical Society, 2022, 513, 754-767.	4.4	5
114	The SN la runaway LP 398-9: detection of circumstellar material and surface rotation. Monthly Notices of the Royal Astronomical Society, 2022, 512, 6122-6133.	4.4	4
115	Formation of Orion fingers. Monthly Notices of the Royal Astronomical Society, 2020, 495, 1172-1187.	4.4	2
116	Reconstructing the EUV Spectrum of Star-forming Regions from Millimeter Recombination Lines of H i, He i, and He ii. Astrophysical Journal, 2020, 903, 29.	4.5	2
117	Propagation of Eccentricity Disturbances in Planetary Systems. AIP Conference Proceedings, 2004, , .	0.4	1
118	Host Galaxies of Obscured Quasars: Infant Starbursts Caught in Action. Proceedings of the International Astronomical Union, 2009, 5, 118-118.	0.0	0
119	Observational biases in determining extrasolar planet eccentricities. EAS Publications Series, 2010, 42, 169-173.	0.3	0
120	Relativistic jets: An astrophysical laboratory for the Doppler effect. American Journal of Physics, 2018, 86, 354-359.	0.7	0
121	Drag action on the MHD winds. Astronomical and Astrophysical Transactions, 2001, 20, 323-324.	0.2	0
122	Outflows & Feedback from Extremely Red Quasars. Proceedings of the International Astronomical Union, 2019, 15, 232-237.	0.0	0