
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5266710/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Growing cotton to produce food: Unravelling interactions between value chains in southern Mali. Development Policy Review, 2022, 40, .	1.0	1
2	Manure matters: prospects for regional banana-livestock integration for sustainable intensification in South-West Uganda. International Journal of Agricultural Sustainability, 2022, 20, 821-843.	1.3	4
3	What Farm Size Sustains a Living? Exploring Future Options to Attain a Living Income From Smallholder Farming in the East African Highlands. Frontiers in Sustainable Food Systems, 2022, 5, .	1.8	6
4	Mapping spatial distribution and geographic shifts of East African highland banana (Musa spp.) in Uganda. PLoS ONE, 2022, 17, e0263439.	1.1	6
5	Quantifying country-to-global scale nitrogen fixation for grain legumes II. Coefficients, templates and estimates for soybean, groundnut and pulses. Plant and Soil, 2022, 474, 1-15.	1.8	26
6	What is â€~conventional' agriculture?. Global Food Security, 2022, 32, 100617.	4.0	53
7	Soil biodiversity and nature-mimicry in agriculture; the power of metaphor?. Outlook on Agriculture, 2022, 51, 75-90.	1.8	14
8	Commodity crops in biodiversity-rich production landscapes: Friends or foes? The example of cotton in the Mid Zambezi Valley, Zimbabwe. Biological Conservation, 2022, 267, 109496.	1.9	3
9	Productivity and constraints of small-scale crop farming in the summer rainfall region of South Africa. Outlook on Agriculture, 2022, 51, 139-154.	1.8	6
10	LINTUL-Cassava-NPK: A simulation model for nutrient-limited cassava growth. Field Crops Research, 2022, 281, 108488.	2.3	5
11	Assessing the nutritional quality of stored grain legume fodders: Correlations among farmers' perceptions, sheep preferences, leaf-stem ratios and laboratory analyses. Small Ruminant Research, 2022, 210, 106673.	0.6	1
12	Change in the climate and other factors affecting agriculture, food or poverty: An opportunity, a threat or both? A personal perspective. Global Food Security, 2022, 33, 100623.	4.0	9
13	Why the Buzz on Regenerative Agriculture?. , 2022, 1, .		0
14	Indifferent to difference? Understanding the unequal impacts of farming technologies among smallholders. A review. Agronomy for Sustainable Development, 2022, 42, .	2.2	2
15	Wetlands in drylands: Use and conflict dynamics at the human–wildlife interface in Mbire District, Zimbabwe. African Journal of Ecology, 2022, 60, 1184-1200.	0.4	1
16	Living income benchmarking of rural households in low-income countries. Food Security, 2021, 13, 729-749.	2.4	16
17	Herbicide Induced Hunger? Conservation Agriculture, <i>Ganyu</i> Labour and Rural Poverty in Central Malawi. Journal of Development Studies, 2021, 57, 244-263.	1.2	15
18	Adapting yet not adopting? Conservation agriculture in Central Malawi. Agriculture, Ecosystems and Environment, 2021, 307, 107224.	2.5	24

#	Article	IF	CITATIONS
19	The effects of management practices on soil organic carbon stocks of oil palm plantations in Sumatra, Indonesia. Journal of Environmental Management, 2021, 278, 111446.	3.8	17
20	Phylogeography and Symbiotic Effectiveness of Rhizobia Nodulating Chickpea (Cicer arietinum L.) in Ethiopia. Microbial Ecology, 2021, 81, 703-716.	1.4	6
21	Intercropping of climbing bean (<i>Phaseolus vulgaris</i> , L.) and East African highland banana (<i>Musa spp.</i>) in the Ugandan highlands. Experimental Agriculture, 2021, 57, 1-14.	0.4	2
22	A recalibrated and tested LINTUL-Cassava simulation model provides insight into the high yield potential of cassava under rainfed conditions. European Journal of Agronomy, 2021, 124, 126242.	1.9	12
23	"That is my farm―– An integrated co-learning approach for whole-farm sustainable intensification in smallholder farming. Agricultural Systems, 2021, 188, 103041.	3.2	14
24	Regenerative Agriculture: An agronomic perspective. Outlook on Agriculture, 2021, 50, 13-25.	1.8	185
25	Phylogeographic distribution of rhizobia nodulating common bean (<i>Phaseolus vulgaris</i> L.) in Ethiopia. FEMS Microbiology Ecology, 2021, 97, .	1.3	8
26	Rejoinder to letter to the editors. Geoderma, 2021, 387, 114862.	2.3	0
27	Mapping micronutrients in grain and soil unearths hidden hunger in Africa. Nature, 2021, 594, 31-32.	13.7	8
28	A Research Road Map for Responsible Use of Agricultural Nitrogen. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	48
29	Basket of options: Unpacking the concept. Outlook on Agriculture, 2021, 50, 116-124.	1.8	15
30	How sustainable is sustainable intensification? Assessing yield gaps at field and farm level across the globe. Global Food Security, 2021, 30, 100552.	4.0	30
31	Statement based on the 4ÂTH international conference on global food security – December 2020: Challenges for a disruptive research Agenda. Global Food Security, 2021, 30, 100554.	4.0	4
32	Integrating the soybean-maize-chicken value chains to attain nutritious diets in Tanzania. Food Security, 2021, 13, 1595-1612.	2.4	7
33	The future of farming: Who will produce our food?. Food Security, 2021, 13, 1073-1099.	2.4	167
34	Efficacy of Nutrient Management Options for Finger Millet Production on Degraded Smallholder Farms in Eastern Uganda. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	2
35	On-farm trees are a safety net for the poorest households rather than a major contributor to food security in Rwanda. Food Security, 2021, 13, 685-699.	2.4	7
36	Dynamics of N-P-K demand and uptake in cassava. Agronomy for Sustainable Development, 2021, 41, 1.	2.2	14

#	Article	IF	CITATIONS
37	Quantifying country-to-global scale nitrogen fixation for grain legumes: I. Reliance on nitrogen fixation of soybean, groundnut and pulses. Plant and Soil, 2021, 469, 1-14.	1.8	32
38	Small farms and development in sub-Saharan Africa: Farming for food, for income or for lack of better options?. Food Security, 2021, 13, 1431-1454.	2.4	72
39	A Living Income for Cocoa Producers in Côte d'Ivoire and Chana?. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	14
40	Nutrient Deficiencies Are Key Constraints to Grain Legume Productivity on "Non-responsive―Soils in Sub-Saharan Africa. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	4
41	Should fertilizer recommendations be adapted to parkland agroforestry systems? Case studies from Ethiopia and Rwanda. Plant and Soil, 2020, 453, 173-188.	1.8	16
42	Micro-livestock in smallholder farming systems: the role, challenges and opportunities for cavies in South Kivu, eastern DR Congo. Tropical Animal Health and Production, 2020, 52, 1167-1177.	0.5	3
43	The Missing Middle: Connected action on agriculture and nutrition across global, national and local levels to achieve Sustainable Development Goal 2. Global Food Security, 2020, 24, 100336.	4.0	60
44	Carbon-free conferencing in the age of COVID-19. Outlook on Agriculture, 2020, 49, 321-329.	1.8	3
45	Diversity in perception and management of farming risks in southern Mali. Agricultural Systems, 2020, 184, 102905.	3.2	15
46	Symbiotic interactions between chickpea (Cicer arietinum L.) genotypes and Mesorhizobium strains. Symbiosis, 2020, 82, 235-248.	1.2	9
47	Reproducibility and external validity of on-farm experimental research in Africa. Experimental Agriculture, 2020, 56, 587-607.	0.4	12
48	Reliable quantification of N2 fixation by non-legumes remains problematic. Nutrient Cycling in Agroecosystems, 2020, 118, 223-225.	1.1	8
49	Farmers' Perceptions as a Driver of Agricultural Practices: Understanding Soil Fertility Management Practices in Cocoa Agroforestry Systems in Cameroon. Human Ecology, 2020, 48, 709-720.	0.7	18
50	The Food Security Conundrum of sub-Saharan Africa. Global Food Security, 2020, 26, 100431.	4.0	84
51	The response of climbing bean to fertilizer and organic manure in the Northern Province of Rwanda. Experimental Agriculture, 2020, 56, 722-737.	0.4	5
52	Soil-based, field-specific fertilizer recommendations are a pipe-dream. Geoderma, 2020, 380, 114680.	2.3	38
53	Towards closing cassava yield gap in West Africa: Agronomic efficiency and storage root yield responses to NPK fertilizers. Field Crops Research, 2020, 253, 107820.	2.3	27
54	Grounding the helicopters. Geoderma, 2020, 373, 114302.	2.3	13

#	Article	IF	CITATIONS
55	Closing yield gaps in oil palm production systems in Ghana through Best Management Practices. European Journal of Agronomy, 2020, 115, 126011.	1.9	29
56	Evaluating the effects of storage conditions on dry matter loss and nutritional quality of grain legume fodders in West Africa. Animal Feed Science and Technology, 2020, 262, 114419.	1.1	11
57	Climate-smart crop production: understanding complexity for achieving triple-wins. Burleigh Dodds Series in Agricultural Science, 2020, , .	0.1	5
58	Grand challenges for the 21st century: what crop models can and can't (yet) do. Journal of Agricultural Science, 2020, 158, 794-805.	0.6	28
59	Sustainable intensification of agriculture in Africa. Frontiers of Agricultural Science and Engineering, 2020, 7, 371.	0.9	6
60	ARE FARMERS SEARCHING FOR AN AFRICAN GREEN REVOLUTION? EXPLORING THE SOLUTION SPACE FOR AGRICULTURAL INTENSIFICATION IN SOUTHERN MALL. Experimental Agriculture, 2019, 55, 288-310.	0.4	21
61	DO OPEN-POLLINATED MAIZE VARIETIES PERFORM BETTER THAN HYBRIDS IN AGROFORESTRY SYSTEMS?. Experimental Agriculture, 2019, 55, 649-661.	0.4	9
62	LEGUME–MAIZE ROTATION OR RELAY? OPTIONS FOR ECOLOGICAL INTENSIFICATION OF SMALLHOLDER FARMS IN THE GUINEA SAVANNA OF NORTHERN GHANA. Experimental Agriculture, 2019, 55, 673-691.	0.4	11
63	FERTILISER APPLICATION PRACTICES AND NUTRIENT DEFICIENCIES IN SMALLHOLDER OIL PALM PLANTATIONS IN INDONESIA. Experimental Agriculture, 2019, 55, 543-559.	0.4	35
64	Vulnerability and adaptation options to climate change for rural livelihoods – A country-wide analysis for Uganda. Agricultural Systems, 2019, 176, 102663.	3.2	30
65	Soil greenhouse gas emissions from inorganic fertilizers and recycled oil palm waste products from Indonesian oil palm plantations. GCB Bioenergy, 2019, 11, 1056-1074.	2.5	24
66	The role of legumes in the sustainable intensification of African smallholder agriculture: Lessons learnt and challenges for the future. Agriculture, Ecosystems and Environment, 2019, 284, 106583.	2.5	118
67	Applying the Aboveground-Belowground Interaction Concept in Agriculture: Spatio-Temporal Scales Matter. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	20
68	A recipe for success? Learning from the rapid adoption of improved chickpea varieties in Ethiopia. International Journal of Agricultural Sustainability, 2019, 17, 34-48.	1.3	35
69	Is labour a major determinant of yield gaps in sub-Saharan Africa? A study of cereal-based production systems in Southern Ethiopia. Agricultural Systems, 2019, 174, 39-51.	3.2	44
70	Co-design of improved climbing bean production practices for smallholder farmers in the highlands of Uganda. Agricultural Systems, 2019, 175, 1-12.	3.2	11
71	Genome Editing, Gene Drives, and Synthetic Biology: Will They Contribute to Disease-Resistant Crops, and Who Will Benefit?. Annual Review of Phytopathology, 2019, 57, 165-188.	3.5	64
72	The influence of water and nutrient management on oil palm yield trends on a large-scale plantation in Ghana. Agricultural Water Management, 2019, 221, 377-387.	2.4	8

#	Article	IF	CITATIONS
73	DOING DEVELOPMENT-ORIENTED AGRONOMY: RETHINKING METHODS, CONCEPTS AND DIRECTION. Experimental Agriculture, 2019, 55, 157-162.	0.4	6
74	Current and potential role of grain legumes on protein and micronutrient adequacy of the diet of rural Ghanaian infants and young children: using linear programming. Nutrition Journal, 2019, 18, 12.	1.5	27
75	Learning from the soil's memory: Tailoring of fertilizer application based on past manure applications increases fertilizer use efficiency and crop productivity on Kenyan smallholder farms. European Journal of Agronomy, 2019, 105, 52-61.	1.9	27
76	Australian wheat beats the heat. Nature Climate Change, 2019, 9, 189-190.	8.1	4
77	Genetic Interaction Studies Reveal Superior Performance of Rhizobium tropici CIAT899 on a Range of Diverse East African Common Bean (Phaseolus vulgaris L.) Genotypes. Applied and Environmental Microbiology, 2019, 85, .	1.4	29
78	FROM BEST FIT TECHNOLOGIES TO BEST FIT SCALING: INCORPORATING AND EVALUATING FACTORS AFFECTING THE ADOPTION OF GRAIN LEGUMES IN SUB-SAHARAN AFRICA. Experimental Agriculture, 2019, 55, 226-251.	0.4	7
79	MAKING THE MOST OF IMPERFECT DATA: A CRITICAL EVALUATION OF STANDARD INFORMATION COLLECTED IN FARM HOUSEHOLD SURVEYS. Experimental Agriculture, 2019, 55, 230-250.	0.4	39
80	Sustainable development goal 2: Improved targets and indicators for agriculture and food security. Ambio, 2019, 48, 685-698.	2.8	162
81	Agricultural land use change and associated driving forces over the past 180Âyears in two municipalities of the Brazilian Cerrado. Geo Journal, 2019, 84, 555-570.	1.7	7
82	WHICH OPTIONS FIT BEST? OPERATIONALIZING THE SOCIO-ECOLOGICAL NICHE CONCEPT. Experimental Agriculture, 2019, 55, 169-190.	0.4	42
83	POOR FARMERS – POOR YIELDS: SOCIO-ECONOMIC, SOIL FERTILITY AND CROP MANAGEMENT INDICATORS AFFECTING CLIMBING BEAN PRODUCTIVITY IN NORTHERN RWANDA. Experimental Agriculture, 2019, 55, 14-34.	0.4	29
84	BEYOND AVERAGES: NEW APPROACHES TO UNDERSTAND HETEROGENEITY AND RISK OF TECHNOLOGY SUCCESS OR FAILURE IN SMALLHOLDER FARMING. Experimental Agriculture, 2019, 55, 84-106.	0.4	52
85	Simulating drought impact and mitigation in cassava using the LINTUL model. Field Crops Research, 2018, 219, 256-272.	2.3	23
86	Crop vs. tree: Can agronomic management reduce trade-offs in tree-crop interactions?. Agriculture, Ecosystems and Environment, 2018, 260, 36-46.	2.5	21
87	Excessive pruning and limited regeneration: Are <i>Faidherbia albida</i> parklands heading for extinction in the Central Rift Valley of Ethiopia?. Land Degradation and Development, 2018, 29, 1623-1633.	1.8	12
88	Nutritional imbalance in smallholder oil palm plantations in Indonesia. Nutrient Cycling in Agroecosystems, 2018, 111, 73-86.	1.1	28
89	Climate-smart land use requires local solutions, transdisciplinary research, policy coherence and transparency. Carbon Management, 2018, 9, 291-301.	1.2	16
90	Additive yield response of chickpea (Cicer arietinum L.) to rhizobium inoculation and phosphorus fertilizer across smallholder farms in Ethiopia. Agriculture, Ecosystems and Environment, 2018, 261, 144-152.	2.5	60

#	Article	IF	CITATIONS
91	Understanding variability in the benefits of N2-fixation in soybean-maize rotations on smallholder farmers' fields in Malawi. Agriculture, Ecosystems and Environment, 2018, 261, 241-250.	2.5	38
92	Climate-smart agroforestry: Faidherbia albida trees buffer wheat against climatic extremes in the Central Rift Valley of Ethiopia. Agricultural and Forest Meteorology, 2018, 248, 339-347.	1.9	87
93	Sustainable intensification through rotations with grain legumes in Sub-Saharan Africa: A review. Agriculture, Ecosystems and Environment, 2018, 261, 172-185.	2.5	141
94	Farmers' use and adaptation of improved climbing bean production practices in the highlands of Uganda. Agriculture, Ecosystems and Environment, 2018, 261, 186-200.	2.5	28
95	Are traditional home gardens in southern Ethiopia heading for extinction? Implications for productivity, plant species richness and food security. Agriculture, Ecosystems and Environment, 2018, 252, 1-13.	2.5	40
96	Benefits of inoculation, P fertilizer and manure on yields of common bean and soybean also increase yield of subsequent maize. Agriculture, Ecosystems and Environment, 2018, 261, 219-229.	2.5	50
97	Soyabean response to rhizobium inoculation across sub-Saharan Africa: Patterns of variation and the role of promiscuity. Agriculture, Ecosystems and Environment, 2018, 261, 211-218.	2.5	38
98	Agricultural intensification and policy interventions: Exploring plausible futures for smallholder farmers in Southern Mali. Land Use Policy, 2018, 70, 623-634.	2.5	18
99	Home garden system dynamics in Southern Ethiopia. Agroforestry Systems, 2018, 92, 1579-1595.	0.9	34
100	Using household survey data to identify large-scale food security patterns across Uganda. PLoS ONE, 2018, 13, e0208714.	1.1	12
101	Editorial overview: The SDGs – aspirations or inspirations for global sustainability. Current Opinion in Environmental Sustainability, 2018, 34, A1-A2.	3.1	8
102	A framework for priority-setting in climate smart agriculture research. Agricultural Systems, 2018, 167, 161-175.	3.2	95
103	The devil is in the detail!. , 2018, , 427-449.		3
104	Food and nutrient gaps in rural Northern Ghana: Does production of smallholder farming households support adoption of food-based dietary guidelines?. PLoS ONE, 2018, 13, e0204014.	1.1	19
105	Risk management options in maize cropping systems in semi-arid areas of Southern Africa. Field Crops Research, 2018, 228, 110-121.	2.3	7
106	Changes in soil organic carbon stocks after conversion from forest to oil palm plantations in Malaysian Borneo. Environmental Research Letters, 2018, 13, 105001.	2.2	30
107	Yield gap analysis and entry points for improving productivity on large oil palm plantations and smallholder farms in Ghana. Agricultural Systems, 2018, 165, 14-25.	3.2	33
108	How do climbing beans fit in farming systems of the eastern highlands of Uganda? Understanding opportunities and constraints at farm level. Agricultural Systems, 2018, 165, 97-110.	3.2	5

#	Article	IF	CITATIONS
109	Can farming provide a way out of poverty for smallholder farmers in central Mozambique?. Agricultural Systems, 2018, 165, 240-251.	3.2	14
110	Decision Support System for Site-Specific Fertilizer Recommendations in Cassava Production in Southern Togo. , 2018, , 125-138.		0
111	Conservation agriculture with trees amplifies negative effects of reduced tillage on maize performance in East Africa. Field Crops Research, 2018, 221, 238-244.	2.3	18
112	N2-fixation and N contribution by grain legumes under different soil fertility status and cropping systems in the Guinea savanna of northern Ghana. Agriculture, Ecosystems and Environment, 2018, 261, 201-210.	2.5	75
113	Managing Nutrients for Climatic Resilience in African Smallholder Maize Production. , 2018, 102, 29-32.		0
114	Tillage, mulch and fertiliser impacts on soil nitrogen availability and maize production in semi-arid Zimbabwe. Soil and Tillage Research, 2017, 168, 125-132.	2.6	45
115	Yield gaps in oil palm: A quantitative review of contributing factors. European Journal of Agronomy, 2017, 83, 57-77.	1.9	271
116	Is production intensification likely to make farm households food-adequate? A simple food availability analysis across smallholder farming systems from East and West Africa. Food Security, 2017, 9, 115-131.	2.4	58
117	Elevating the conversation about GE crops. Nature Biotechnology, 2017, 35, 302-304.	9.4	6
118	Tree-crop interactions in maize-eucalypt woodlot systems in southern Rwanda. European Journal of Agronomy, 2017, 86, 78-86.	1.9	10
119	Is maize-cowpea intercropping a viable option for smallholder farms in the risky environments of semi-arid southern Africa?. Field Crops Research, 2017, 209, 73-87.	2.3	43
120	Modelling cereal crops to assess future climate risk for family food self-sufficiency in southern Mali. Field Crops Research, 2017, 201, 133-145.	2.3	48
121	Precision farming for increased land and labour productivity in semi-arid West Africa. A review. Agronomy for Sustainable Development, 2017, 37, 1.	2.2	47
122	Agronomic biofortification of crops to fight hidden hunger in sub-Saharan Africa. Global Food Security, 2017, 12, 8-14.	4.0	211
123	Strong spatial-temporal patterns in maize yield response to nutrient additions in African smallholder farms. Field Crops Research, 2017, 214, 321-330.	2.3	44
124	Understanding cassava yield response to soil and fertilizer nutrient supply in West Africa. Plant and Soil, 2017, 420, 331-347.	1.8	18
125	Maize-grain legume intercropping for enhanced resource use efficiency and crop productivity in the Guinea savanna of northern Ghana. Field Crops Research, 2017, 213, 38-50.	2.3	128
126	Disentangling the positive and negative effects of trees on maize performance in smallholdings of Northern Rwanda. Field Crops Research, 2017, 213, 1-11.	2.3	26

#	Article	IF	CITATIONS
127	Grain legume cultivation and children's dietary diversity in smallholder farming households in rural Ghana and Kenya. Food Security, 2017, 9, 1053-1071.	2.4	14
128	Collective action in a smallholder oil palm production system in Indonesia: The key to sustainable and inclusive smallholder palm oil?. Journal of Rural Studies, 2017, 54, 198-210.	2.1	43
129	Co-learning cycles to support the design of innovative farm systems in southern Mali. European Journal of Agronomy, 2017, 89, 61-74.	1.9	48
130	Water and radiation use efficiencies explain the effect of potassium on the productivity of cassava. European Journal of Agronomy, 2017, 83, 28-39.	1.9	22
131	Food availability and livelihood strategies among rural households across Uganda. Food Security, 2017, 9, 1385-1403.	2.4	36
132	Where is sugarcane cropping expanding in the brazilian cerrado, and why? A case study. Anais Da Academia Brasileira De Ciencias, 2017, 89, 2485-2493.	0.3	7
133	Mineral Nutrition of Cocoa. Advances in Agronomy, 2017, , 185-270.	2.4	52
134	A Golden Age for Agronomy?. , 2017, , 150-160.		17
135	Biological Nitrogen Fixation: Forms and Regulating Factors. , 2017, , 232-234.		1
136	Population and livelihoods on the edge. , 2017, , 62-84.		0
137	Whither TFCAs and people on the edge in Southern Africa?. , 2017, , 192-203.		1
138	Drivers of household food availability in sub-Saharan Africa based on big data from small farms. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 458-463.	3.3	248
139	Climate change adaptation and mitigation in smallholder crop–livestock systems in sub-Saharan Africa: a call for integrated impact assessments. Regional Environmental Change, 2016, 16, 2331-2343.	1.4	100
140	Diversity in crop residue management across an intensification gradient in southern Africa: System dynamics and crop productivity. Field Crops Research, 2016, 185, 79-88.	2.3	19
141	Adaptation of agriculture to climate change in semi-arid Borena, Ethiopia. Regional Environmental Change, 2016, 16, 2317-2330.	1.4	28
142	Unravelling the causes of variability in crop yields and treatment responses for better tailoring of options for sustainable intensification in southern Mali. Field Crops Research, 2016, 187, 113-126.	2.3	42
143	Migration and Self-Protection Against Climate Change: A Case Study of Samburu County, Kenya. World Development, 2016, 84, 55-68.	2.6	42
144	Livestock wealth and social capital as insurance against climate risk: A case study of Samburu County in Kenya. Agricultural Systems, 2016, 146, 44-54.	3.2	29

#	Article	IF	CITATIONS
145	Waking the Sleeping Giant: Agricultural intensification, extensification or stagnation in Mali's Guinea Savannah. Agricultural Systems, 2016, 148, 58-70.	3.2	21
146	Understanding variability in soybean yield and response to P-fertilizer and rhizobium inoculants on farmers' fields in northern Nigeria. Field Crops Research, 2016, 186, 133-145.	2.3	119
147	Fertiliser requirements for balanced nutrition of cassava across eight locations in West Africa. Field Crops Research, 2016, 185, 69-78.	2.3	56
148	Methods for Environment: Productivity Trade-Off Analysis in Agricultural Systems. , 2016, , 189-198.		0
149	CLIMATE VARIABILITY AND CHANGE IN SOUTHERN MALI: LEARNING FROM FARMER PERCEPTIONS AND ON-FARM TRIALS. Experimental Agriculture, 2015, 51, 615-634.	0.4	34
150	Milk: the new white gold? Milk production options for smallholder farmers in Southern Mali. Animal, 2015, 9, 1221-1229.	1.3	13
151	Understanding farm trajectories and development pathways: Two decades of change in southern Mali. Agricultural Systems, 2015, 139, 210-222.	3.2	36
152	Which smallholder farmers benefit most from biomass production for food and biofuel? The case of Gondola district, central Mozambique. Biomass and Bioenergy, 2015, 83, 257-268.	2.9	10
153	Climate change and maize yield in southern Africa: what can farm management do?. Global Change Biology, 2015, 21, 4588-4601.	4.2	81
154	Integrated soil fertility management in sub-Saharan Africa: unravelling local adaptation. Soil, 2015, 1, 491-508.	2.2	263
155	Beyond conservation agriculture. Frontiers in Plant Science, 2015, 6, 870.	1.7	269
156	Labour not land constrains agricultural production and food self-sufficiency in maize-based smallholder farming systems in Mozambique. Food Security, 2015, 7, 857-874.	2.4	37
157	PRACT (Prototyping Rotation and Association with Cover crop and no Till) – a tool for designing conservation agriculture systems. European Journal of Agronomy, 2015, 69, 21-31.	1.9	12
158	Fuelwood collection and its impacts on a protected tropical mountain forest in Uganda. Forest Ecology and Management, 2015, 354, 56-67.	1.4	45
159	DIVERSITY IN SMALLHOLDER FARMS GROWING COFFEE AND THEIR USE OF RECOMMENDED COFFEE MANAGEMENT PRACTICES IN UGANDA. Experimental Agriculture, 2015, 51, 594-614.	0.4	10
160	Relationships among Jatropha curcas seed yield and vegetative plant components under different management and cropping systems in Indonesia. Biomass and Bioenergy, 2015, 80, 128-139.	2.9	13
161	De-mystifying family farming: Features, diversity and trends across the globe. Global Food Security, 2015, 5, 11-18.	4.0	84
162	Water use by short rotation Eucalyptus woodlots in southern Rwanda. Agroforestry Systems, 2015, 89, 1119-1139.	0.9	7

#	Article	IF	CITATIONS
163	Maize crop residue uses and trade-offs on smallholder crop-livestock farms in Zimbabwe: Economic implications of intensification. Agriculture, Ecosystems and Environment, 2015, 214, 31-45.	2.5	30
164	Evaluating coffee yield gaps and important biotic, abiotic, and management factors limiting coffee production in Uganda. European Journal of Agronomy, 2015, 63, 1-11.	1.9	88
165	Trade-offs around the use of biomass for livestock feed and soil cover in dairy farms in the Alaotra lake region of Madagascar. Agricultural Systems, 2015, 134, 36-47.	3.2	29
166	Feeding, crop residue and manure management for integrated soil fertility management – A case study from Kenya. Agricultural Systems, 2015, 134, 24-35.	3.2	71
167	Key role of China and its agriculture in global sustainable phosphorus management. Environmental Research Letters, 2014, 9, 054003.	2.2	65
168	Response to Sommer et al. (2014) "Fertilizer use is not required as a fourth principle to define Conservation Agriculture― Field Crops Research, 2014, 169, 149.	2.3	2
169	Resource use and food self-sufficiency at farm scale within two agro-ecological zones of Rwanda. Food Security, 2014, 6, 609-628.	2.4	18
170	A fourth principle is required to define Conservation Agriculture in sub-Saharan Africa: The appropriate use of fertilizer to enhance crop productivity. Field Crops Research, 2014, 155, 10-13.	2.3	265
171	Three Interwoven Dimensions of Natural Resource Use: Quantity, Quality and Access in the Great Limpopo Transfrontier Conservation Area. Human Ecology, 2014, 42, 199-215.	0.7	19
172	Comparative assessment of maize, finger millet and sorghum for household food security in the face of increasing climatic risk. European Journal of Agronomy, 2014, 55, 29-41.	1.9	51
173	Achieving global food security whilst reconciling demands on the environment: report of the First International Conference on Global Food Security. Food Security, 2014, 6, 299-302.	2.4	15
174	Analysis of trade-offs in agricultural systems: current status and way forward. Current Opinion in Environmental Sustainability, 2014, 6, 110-115.	3.1	105
175	Adaptive livelihood strategies employed by farmers to close the food gap in semi-arid south eastern Zimbabwe. Food Security, 2014, 6, 313-326.	2.4	16
176	Benefits of legume–maize rotations: Assessing the impact of diversity on the productivity of smallholders in Western Kenya. Field Crops Research, 2014, 168, 75-85.	2.3	55
177	The †One cow per poor family' programme: Current and potential fodder availability within smallholder farming systems in southwest Rwanda. Agricultural Systems, 2014, 131, 11-22.	3.2	34
178	Analysing soil organic C gradients in a smallholder farming village of East Zimbabwe. Geoderma Regional, 2014, 2-3, 32-40.	0.9	8
179	Simulating potential growth and yield of oil palm (Elaeis guineensis) with PALMSIM: Model description, evaluation and application. Agricultural Systems, 2014, 131, 1-10.	3.2	60
180	Phenological development of East African highland banana involves trade-offs between physiological age and chronological age. European Journal of Agronomy, 2014, 60, 41-53.	1.9	17

#	Article	IF	CITATIONS
181	Response to Sommer et al. (2014) Fertiliser use is not required as a fourth principle to define conservation agriculture. Field Crops Research, 2014, 167, 159.	2.3	5
182	Agriculture and nature: Trouble and strife?. Biological Conservation, 2014, 170, 232-245.	1.9	98
183	The evaluation and adoption of annual legumes by smallholder maize farmers for soil fertility maintenance and food diversity in central Malawi. Food Security, 2014, 6, 45-59.	2.4	18
184	Which farmers benefit most from sustainable intensification? An ex-ante impact assessment of expanding grain legume production in Malawi. European Journal of Agronomy, 2014, 58, 28-38.	1.9	54
185	Evaluation of climate adaptation options for Sudano-Sahelian cropping systems. Field Crops Research, 2014, 156, 63-75.	2.3	28
186	Sources of vulnerability to a variable and changing climate among smallholder households in Zimbabwe: A participatory analysis. Climate Risk Management, 2014, 3, 65-78.	1.6	74
187	IMPROVING THE EFFICIENCY OF USE OF SMALL AMOUNTS OF NITROGEN AND PHOSPHORUS FERTILISER ON SMALLHOLDER MAIZE IN CENTRAL MALAWI. Experimental Agriculture, 2014, 50, 229-249.	0.4	38
188	Feasibility and competitiveness of intensive smallholder dairy farming in Brazil in comparison with soya and sugarcane: Case study of the Balde Cheio Programme. Agricultural Systems, 2013, 121, 63-72.	3.2	21
189	Managing Tephrosia mulch and fertilizer to enhance coffee productivity on smallholder farms in the Eastern African Highlands. European Journal of Agronomy, 2013, 48, 19-29.	1.9	16
190	Courting the rain: Rethinking seasonality and adaptation to recurrent drought in semi-arid southern Africa. Agricultural Systems, 2013, 118, 91-104.	3.2	59
191	Pushing the envelope? Maize production intensification and the role of cattle manure in recovery of degraded soils in smallholder farming areas of Zimbabwe. Field Crops Research, 2013, 147, 40-53.	2.3	67
192	When yield gaps are poverty traps: The paradigm of ecological intensification in African smallholder agriculture. Field Crops Research, 2013, 143, 76-90.	2.3	697
193	Biodiesel policy for family farms in Brazil: One-size-fits-all?. Environmental Science and Policy, 2013, 27, 195-205.	2.4	21
194	Nutrient flows and balances in urban and peri-urban agroecosystems of Kano, Nigeria. Nutrient Cycling in Agroecosystems, 2013, 95, 231-254.	1.1	18
195	Assessing farmers' interest in agroforestry in two contrasting agro-ecological zones of Rwanda. Agroforestry Systems, 2013, 87, 141-158.	0.9	35
196	Participatory action research (PAR) as an entry point for supporting climate change adaptation by smallholder farmers in Africa. Environmental Development, 2013, 5, 6-22.	1.8	99
197	Effects of climate variability and climate change on crop production in southern Mali. European Journal of Agronomy, 2013, 49, 115-125.	1.9	93
198	Changes in soil quality and plant available water capacity following systems re-design on commercial vegetable farms. European Journal of Agronomy, 2013, 46, 10-19.	1.9	27

#	Article	IF	CITATIONS
199	Managing soil fertility to adapt to rainfall variability in smallholder cropping systems in Zimbabwe. Field Crops Research, 2013, 154, 211-225.	2.3	49
200	Complex contexts and dynamic drivers: Understanding four decades of forest loss and recovery in an East African protected area. Biological Conservation, 2013, 159, 257-268.	1.9	80
201	Can We Define the Term â€~Farming Systems'? A Question of Scale. Outlook on Agriculture, 2013, 42, 149-153.	1.8	38
202	Response to â€~Combining sustainable agricultural production with economic and environmental benefits'. Geographical Journal, 2013, 179, 183-185.	1.6	10
203	The Use of Woodland Products to Cope with Climate Variability in Communal Areas in Zimbabwe. Ecology and Society, 2013, 18, .	1.0	27
204	Failing to Yield? Ploughs, Conservation Agriculture and the Problem of Agricultural Intensification: An Example from the Zambezi Valley, Zimbabwe. Journal of Development Studies, 2012, 48, 393-412.	1.2	82
205	Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. Proceedings of the United States of America, 2012, 109, 6348-6353.	3.3	486
206	No silver bullets for African soil problems. Nature, 2012, 485, 41-41.	13.7	6
207	The productionâ€ecological sustainability of cassava, sugarcane and sweet sorghum cultivation for bioethanol in Mozambique. GCB Bioenergy, 2012, 4, 20-35.	2.5	14
208	Maize–grain legume intercropping is an attractive option for ecological intensification that reduces climatic risk for smallholder farmers in central Mozambique. Field Crops Research, 2012, 136, 12-22.	2.3	271
209	Impact of policies designed to enhance efficiency of water and nutrients on farm households varying in resource endowments in south India. Njas - Wageningen Journal of Life Sciences, 2012, 59, 41-52.	7.9	6
210	Socio-Ecological Niches for Minimum Tillage and Crop-Residue Retention in Continuous Maize Cropping Systems in Smallholder Farms of Central Kenya. Agronomy Journal, 2012, 104, 188-198.	0.9	31
211	Comparative performance of conservation agriculture and current smallholder farming practices in semi-arid Zimbabwe. Field Crops Research, 2012, 132, 117-128.	2.3	139
212	Minimum tillage and vegetative barrier effects on crop yields in relation to soil water content in the Central Kenya highlands. Field Crops Research, 2012, 132, 129-138.	2.3	24
213	Photosynthetic adaptation of soybean due to varying effectiveness of N2 fixation by two distinct Bradyrhizobium japonicum strains. Environmental and Experimental Botany, 2012, 76, 1-6.	2.0	48
214	Soyabeans and sustainable agriculture in southern Africa. International Journal of Agricultural Sustainability, 2011, 9, 50-58.	1.3	39
215	Competing use of organic resources, village-level interactions between farm types and climate variability in a communal area of NE Zimbabwe. Agricultural Systems, 2011, 104, 175-190.	3.2	111
216	Communicating complexity: Integrated assessment of trade-offs concerning soil fertility management within African farming systems to support innovation and development. Agricultural Systems, 2011, 104, 191-203.	3.2	339

#	Article	IF	CITATIONS
217	Policies to support economic and environmental goals at farm and regional scales: Outcomes for rice farmers in Southern India depend on their resource endowment. Agricultural Systems, 2011, 104, 82-93.	3.2	11
218	Delineating the drivers of waning wildlife habitat: The predominance of cotton farming on the fringe of protected areas in the Mid-Zambezi Valley, Zimbabwe. Biological Conservation, 2011, 144, 1481-1493.	1.9	36
219	Application of Fuzzy Cognitive Mapping in Livelihood Vulnerability Analysis. Ecology and Society, 2011, 16, .	1.0	41
220	Tillage and vegetative barrier effects on soil conservation and short-term economic benefits in the Central Kenya highlands. Field Crops Research, 2011, 122, 85-94.	2.3	41
221	A research agenda to explore the role of conservation agriculture in African smallholder farming systems. Field Crops Research, 2011, 124, 468-472.	2.3	198
222	Managing soil fertility diversity to enhance resource use efficiencies in smallholder farming systems: a case from Murewa District, Zimbabwe. Nutrient Cycling in Agroecosystems, 2011, 90, 87-103.	1.1	68
223	Strengthening understanding and perceptions of mineral fertilizer use among smallholder farmers: evidence from collective trials in western Kenya. Agriculture and Human Values, 2011, 28, 27-38.	1.7	20
224	ADAPTABILITY OF IRRIGATED RICE TO TEMPERATURE CHANGE IN SAHELIAN ENVIRONMENTS. Experimental Agriculture, 2011, 47, 69-87.	0.4	20
225	Targeting Resources Within Diverse, Heterogeneous and Dynamic Farming Systems: Towards a â€ [~] Uniquely African Green Revolution'. , 2011, , 747-758.		8
226	Effect of Farmer Resource Endowment and Management Strategies on Spatial Variability of Soil Fertility in Contrasting Agro-ecological Zones in Zimbabwe. , 2011, , 1221-1229.		0
227	Carbon and nutrient losses during manure storage under traditional and improved practices in smallholder crop-livestock systems—evidence from Kenya. Plant and Soil, 2010, 328, 253-269.	1.8	74
228	Drivers of land use change and household determinants of sustainability in smallholder farming systems of Eastern Uganda. Population and Environment, 2010, 31, 474-506.	1.3	57
229	Effect of farmer management strategies on spatial variability of soil fertility and crop nutrient uptake in contrasting agro-ecological zones in Zimbabwe. Nutrient Cycling in Agroecosystems, 2010, 88, 111-120.	1.1	42
230	Towards understanding factors that govern fertilizer response in cassava: lessons from East Africa. Nutrient Cycling in Agroecosystems, 2010, 86, 133-151.	1.1	41
231	Nitrogen and phosphorus capture and recovery efficiencies, and crop responses to a range of soil fertility management strategies in sub-Saharan Africa. Nutrient Cycling in Agroecosystems, 2010, 88, 59-77.	1.1	36
232	Impacts of heterogeneity in soil fertility on legume-finger millet productivity, farmers' targeting and economic benefits. Nutrient Cycling in Agroecosystems, 2010, 87, 209-231.	1.1	11
233	Responses of legumes to rhizobia and arbuscular mycorrhizal fungi: A meta-analysis of potential photosynthate limitation of symbioses. Soil Biology and Biochemistry, 2010, 42, 125-127.	4.2	106
234	FIELD—A summary simulation model of the soil–crop system to analyse long-term resource interactions and use efficiencies at farm scale. European Journal of Agronomy, 2010, 32, 10-21.	1.9	38

KEN E GILLER

#	Article	IF	CITATIONS
235	Impact of no tillage and mulching practices on cotton production in North Cameroon: A multi-locational on-farm assessment. Soil and Tillage Research, 2010, 108, 68-76.	2.6	51
236	Resource use efficiency and environmental performance of nine major biofuel crops, processed by first-generation conversion techniques. Biomass and Bioenergy, 2010, 34, 588-601.	2.9	262
237	Integrated Soil Fertility Management. Outlook on Agriculture, 2010, 39, 17-24.	1.8	423
238	False beliefs on the socio-economic drivers of cassava cropping. Agronomy for Sustainable Development, 2010, 30, 433-444.	2.2	23
239	Rice production with less irrigation water is possible in a Sahelian environment. Field Crops Research, 2010, 116, 154-164.	2.3	90
240	Mineral fertilizer response and nutrient use efficiencies of East African highland banana (Musa spp.,) Tj ETQq0 0 (Ͻ rgBT /Ον	erlock 10 Tf
241	Biofuel, dairy production and beef in Brazil: competing claims on land use in São Paulo state. Journal of Peasant Studies, 2010, 37, 769-792.	3.0	74
242	Do Mixedâ€ S pecies Legume Fallows Provide Longâ€Term Maize Yield Benefit Compared with Monoculture Legume Fallows?. Agronomy Journal, 2009, 101, 1352-1362.	0.9	14
243	Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses?. Soil Biology and Biochemistry, 2009, 41, 1233-1244.	4.2	400
244	Heavy metals and soil microbes. Soil Biology and Biochemistry, 2009, 41, 2031-2037.	4.2	373
245	Cotton expansion and biodiversity loss in African savannahs, opportunities and challenges for conservation agriculture: a review paper based on two case studies. Biodiversity and Conservation, 2009, 18, 2625-2644.	1.2	35
246	Network analysis of N flows and food self-sufficiency—a comparative study of crop-livestock systems of the highlands of East and southern Africa. Nutrient Cycling in Agroecosystems, 2009, 85, 169-186.	1.1	34
247	Allometric growth relationships of East Africa highland bananas (<i>Musa</i> AAAâ€EAHB) cv. Kisansa and Mbwazirume. Annals of Applied Biology, 2009, 155, 403-418.	1.3	49
248	Productivity and residual benefits of grain legumes to sorghum under semi-arid conditions in south-western Zimbabwe: Unravelling the effects of water and nitrogen using a simulation model. Field Crops Research, 2009, 110, 173-184.	2.3	37
249	Closing the cassava yield gap: An analysis from smallholder farms in East Africa. Field Crops Research, 2009, 112, 24-36.	2.3	205
250	Conservation agriculture and smallholder farming in Africa: The heretics' view. Field Crops Research, 2009, 114, 23-34.	2.3	1,021
251	Beyond resource constraints – Exploring the biophysical feasibility of options for the intensification of smallholder crop-livestock systems in Vihiga district, Kenya. Agricultural Systems, 2009, 101, 1-19.	3.2	83
252	An integrated evaluation of strategies for enhancing productivity and profitability of resource-constrained smallholder farms in Zimbabwe. Agricultural Systems, 2009, 101, 57-68.	3.2	27

#	Article	IF	CITATIONS
253	Identifying key entry-points for strategic management of smallholder farming systems in sub-Saharan Africa using the dynamic farm-scale simulation model NUANCES-FARMSIM. Agricultural Systems, 2009, 102, 89-101.	3.2	63
254	Characterising rice-based farming systems to identify opportunities for adopting water efficient cultivation methods in Tamil Nadu, India. Agricultural Water Management, 2009, 96, 1851-1860.	2.4	21
255	Lifetime productivity of dairy cows in smallholder farming systems of the Central highlands of Kenya. Animal, 2009, 3, 1044-1056.	1.3	49
256	Cotton expansion and biodiversity loss in African savannahs, opportunities and challenges for conservation agriculture: a review paper based on two case studies. Topics in Biodiversity and Conservation, 2009, , 89-108.	0.3	1
257	THE CONTRIBUTION OF TRADITIONAL VEGETABLES TO HOUSEHOLD FOOD SECURITY IN TWO COMMUNITIES OF VIHIGA AND MIGORI DISTRICTS, KENYA. Acta Horticulturae, 2009, , 57-64.	0.1	15
258	Yield gaps, nutrient use efficiencies and response to fertilisers by maize across heterogeneous smallholder farms of western Kenya. Plant and Soil, 2008, 313, 19-37.	1.8	157
259	Variable grain legume yields, responses to phosphorus and rotational effects on maize across soil fertility gradients on African smallholder farms. Nutrient Cycling in Agroecosystems, 2008, 80, 1-18.	1.1	37
260	Farmers' agronomic and social evaluation of productivity, yield and N2-fixation in different cowpea varieties and their subsequent residual N effects on a succeeding maize crop. Nutrient Cycling in Agroecosystems, 2008, 80, 199.	1.1	56
261	Multiple benefits of manure: The key to maintenance of soil fertility and restoration of depleted sandy soils on African smallholder farms. Nutrient Cycling in Agroecosystems, 2008, 80, 267-282.	1.1	146
262	Soil organic carbon dynamics of improved fallow-maize rotation systems under conventional and no-tillage in Central Zimbabwe. Nutrient Cycling in Agroecosystems, 2008, 81, 85-93.	1.1	38
263	Residual effects of fallows on selected soil hydraulic properties in a kaolinitic soil subjected to conventional tillage (CT) and no tillage (NT). Agroforestry Systems, 2008, 72, 161-168.	0.9	21
264	Action research on alternative land tenure arrangements in Wenchi, Ghana: learning from ambiguous social dynamics and self-organized institutional innovation. Agriculture and Human Values, 2008, 25, 389-403.	1.7	15
265	Unravelling the effects of soil and crop management on maize productivity in smallholder agricultural systems of western Kenya—An application of classification and regression tree analysis. Agriculture, Ecosystems and Environment, 2008, 123, 137-150.	2.5	180
266	Increasing land pressure in East Africa: The changing role of cassava and consequences for sustainability of farming systems. Agriculture, Ecosystems and Environment, 2008, 128, 239-250.	2.5	52
267	Integrating new soybean varieties for soil fertility management in smallholder systems through participatory research: Lessons from western Kenya. Agricultural Systems, 2008, 97, 1-12.	3.2	15
268	Aggregating field-scale knowledge into farm-scale models of African smallholder systems: Summary functions to simulate crop production using APSIM. Agricultural Systems, 2008, 97, 151-166.	3.2	35
269	Modified rice cultivation in Tamil Nadu, India: Yield gains and farmers' (lack of) acceptance. Agricultural Systems, 2008, 98, 82-94.	3.2	72
270	Low-Cost Economic and Environmental Performance Assessment of Farm Households Systems: Application to Mixed Crop-Livestock Systems in the Ethiopian Highlands. Agroecology and Sustainable Food Systems, 2008, 32, 565-595.	0.9	5

#	Article	IF	CITATIONS
271	Combining Organic and Mineral Fertilizers for Integrated Soil Fertility Management in Smallholder Farming Systems of Kenya: Explorations Using the Crop‧oil Model FIELD. Agronomy Journal, 2008, 100, 1511-1526.	0.9	72
272	Competing Claims on Natural Resources: What Role for Science?. Ecology and Society, 2008, 13, .	1.0	141
273	Uptake of heavy metals by vegetables irrigated using wastewater and the subsequent risks in Harare, Zimbabwe. Physics and Chemistry of the Earth, 2007, 32, 1399-1405.	1.2	85
274	Heterogeneity of crop productivity and resource use efficiency within smallholder Kenyan farms: Soil fertility gradients or management intensity gradients?. Agricultural Systems, 2007, 94, 376-390.	3.2	127
275	Analysing trade-offs in resource and labour allocation by smallholder farmers using inverse modelling techniques: A case-study from Kakamega district, western Kenya. Agricultural Systems, 2007, 95, 76-95.	3.2	83
276	Nutrient use efficiencies and crop responses to N, P and manure applications in Zimbabwean soils: Exploring management strategies across soil fertility gradients. Field Crops Research, 2007, 100, 348-368.	2.3	79
277	Soil type, management history and current resource allocation: Three dimensions regulating variability in crop productivity on African smallholder farms. Field Crops Research, 2007, 101, 296-305.	2.3	166
278	Evaluating sustainable and profitable cropping sequences with cassava and four legume crops: Effects on soil fertility and maize yields in the forest/savannah transitional agro-ecological zone of Ghana. Field Crops Research, 2007, 103, 87-97.	2.3	62
279	Manure as a key resource within smallholder farming systems: Analysing farm-scale nutrient cycling efficiencies with the NUANCES framework. Livestock Science, 2007, 112, 273-287.	0.6	115
280	Transfer and loss of naturally-occurring plasmids among isolates of Rhizobium leguminosarum bv. viciae in heavy metal contaminated soils. Soil Biology and Biochemistry, 2007, 39, 1066-1077.	4.2	21
281	Influence of nutrient management strategies on variability of soil fertility, crop yields and nutrient balances on smallholder farms in Zimbabwe. Agriculture, Ecosystems and Environment, 2007, 119, 112-126.	2.5	228
282	Niche-based assessment of contributions of legumes to the nitrogen economy of Western Kenya smallholder farms. Plant and Soil, 2007, 292, 119-135.	1.8	91
283	Productivity and residual benefits of grain legumes to sorghum under semi-arid conditions in southwestern Zimbabwe. Plant and Soil, 2007, 299, 1-15.	1.8	60
284	Relationships between rhizobial diversity and host legume nodulation and nitrogen fixation in tropical ecosystems. Nutrient Cycling in Agroecosystems, 2007, 76, 319-330.	1.1	25
285	Integrating legumes to improve N cycling on smallholder farms in sub-humid Zimbabwe: resource quality, biophysical and environmental limitations. Nutrient Cycling in Agroecosystems, 2007, 76, 219-231.	1.1	31
286	Improved legume tree fallows and tillage effects on structural stability and infiltration rates of a kaolinitic sandy soil from central Zimbabwe. Soil and Tillage Research, 2007, 96, 182-194.	2.6	30
287	Relationships between rhizobial diversity and host legume nodulation and nitrogen fixation in tropical ecosystems. , 2007, , 691-702.		2
288	Manure and soil properties affect survival and persistence of soyabean nodulating rhizobia in smallholder soils of Zimbabwe. Applied Soil Ecology, 2006, 32, 232-242.	2.1	39

#	Article	IF	CITATIONS
289	Resource use dynamics and interactions in the tropics: Scaling up in space and time. Agricultural Systems, 2006, 88, 8-27.	3.2	180
290	Exploring diversity of crop and soil management within smallholder African farms: A dynamic model for simulation of N balances and use efficiencies at field scale. Agricultural Systems, 2006, 91, 71-101.	3.2	39
291	Atmospheric nitrogen deposition in world biodiversity hotspots: the need for a greater global perspective in assessing N deposition impacts. Global Change Biology, 2006, 12, 470-476.	4.2	471
292	Nitrogen cycling efficiencies through resource-poor African crop–livestock systems. Agriculture, Ecosystems and Environment, 2006, 112, 261-282.	2.5	157
293	Popular myths around soil fertility management in sub-Saharan Africa. Agriculture, Ecosystems and Environment, 2006, 116, 34-46.	2.5	258
294	Nutrient allocation strategies across a simplified heterogeneous African smallholder farm. Agriculture, Ecosystems and Environment, 2006, 116, 60-71.	2.5	36
295	Nitrogen Release from Decomposing Residues of Leguminous Cover Crops and their Effect on Maize Yield on Depleted Soils of Bukoba District, Tanzania. Plant and Soil, 2006, 279, 77-93.	1.8	50
296	Les indicateurs économiques et écologiques appliqués aux exploitations familiales et à l'analyse régionaleÂ: introduction À différentes méthodes et perspectives. , 2006, , 142-154.		0
297	Soil biodiversity in rapidly changing tropical landscapes: scaling down and scaling up. , 2005, , 295-318.		9
298	Estimating yields of tropical maize genotypes from non-destructive, on-farm plant morphological measurements. Agriculture, Ecosystems and Environment, 2005, 105, 213-220.	2.5	22
299	Dynamics of banana-based farming systems in Bukoba district, Tanzania: changes in land use, cropping and cattle keeping. Agriculture, Ecosystems and Environment, 2005, 106, 395-406.	2.5	48
300	The effect of long-term irrigation using wastewater on heavy metal contents of soils under vegetables in Harare, Zimbabwe. Agriculture, Ecosystems and Environment, 2005, 107, 151-165.	2.5	461
301	Tapping indigenous herbaceous legumes for soil fertility management by resource-poor farmers in Zimbabwe. Agriculture, Ecosystems and Environment, 2005, 109, 221-233.	2.5	53
302	Exploring diversity in soil fertility management of smallholder farms in western Kenya. Agriculture, Ecosystems and Environment, 2005, 110, 149-165.	2.5	215
303	Exploring diversity in soil fertility management of smallholder farms in western Kenya. Agriculture, Ecosystems and Environment, 2005, 110, 166-184.	2.5	202
304	Long-term changes in organic matter of woodland soils cleared for arable cropping in Zimbabwe. European Journal of Soil Science, 2005, 56, 050912034650038-???.	1.8	33
305	Symbiotic effectiveness and host ranges of indigenous rhizobia nodulating promiscuous soyabean varieties in Zimbabwean soils. Soil Biology and Biochemistry, 2005, 37, 1169-1176.	4.2	48
306	Managing Legume Cover Crops and their Residues to Enhance Productivity of Degraded Soils in the Humid Tropics: A Case Study in Bukoba District, Tanzania. Nutrient Cycling in Agroecosystems, 2005, 73, 75-87.	1.1	22

#	Article	IF	CITATIONS
307	Maize productivity and mineral N dynamics following different soil fertility management practices on a depleted sandy soil in Zimbabwe. Agriculture, Ecosystems and Environment, 2004, 102, 119-131.	2.5	60
308	Mineral N dynamics, leaching and nitrous oxide losses under maize following two-year improved fallows on a sandy loam soil in Zimbabwe. Plant and Soil, 2004, 259, 315-330.	1.8	70
309	Woody legume fallow productivity, biological N2-fixation and residual benefits to two successive maize crops in Zimbabwe. Plant and Soil, 2004, 262, 303-315.	1.8	67
310	Land tenure and differential soil fertility management practices among native and migrant farmers in Wenchi, Ghana: implications for interdisciplinary action research. Njas - Wageningen Journal of Life Sciences, 2004, 52, 331-348.	7.9	36
311	Improved fallows: effects of species interaction on growth and productivity in monoculture and mixed stands. Forest Ecology and Management, 2004, 187, 267-280.	1.4	16
312	Title is missing!. Agroforestry Systems, 2003, 57, 199-211.	0.9	41
313	Nitrate-N dynamics following improved fallows and maize root development in a Zimbabwean sandy clay loam. Agroforestry Systems, 2003, 59, 187-195.	0.9	33
314	Partitioning of simulated rainfall in a kaolinitic soil under improved fallow–maize rotation in Zimbabwe. Agroforestry Systems, 2003, 59, 207-214.	0.9	22
315	Distribution and diversity of rhizobia nodulating agroforestry legumes in soils from three continents in the tropics. Molecular Ecology, 2003, 12, 917-929.	2.0	74
316	Nodulation of tree legumes and the ecology of their native rhizobial populations in tropical soils. Applied Soil Ecology, 2003, 22, 211-223.	2.1	37
317	Subsoil Nitrogen Capture in Mixed Legume Stands as Assessed by Deep Nitrogenâ€15 Placement. Soil Science Society of America Journal, 2003, 67, 573-582.	1.2	33
318	Subsoil Nitrogen Capture in Mixed Legume Stands as Assessed by Deep Nitrogen-15 Placement. Soil Science Society of America Journal, 2003, 67, 573.	1.2	12
319	The Diversity of Phaseolus -Nodulating Rhizobial Populations Is Altered by Liming of Acid Soils Planted with Phaseolus vulgaris L. in Brazil. Applied and Environmental Microbiology, 2002, 68, 4025-4034.	1.4	82
320	The Soil Microbial Community and Soil Tillage. Advances in Agroecology, 2002, , .	0.3	1
321	The Effects of Salinity and Sodicity upon Nodulation and Nitrogen Fixation in Chickpea (Cicer) Tj ETQq1 1 0.7843	14 rgBT /(1.4	Overlock 10
322	Effects of liming and legume/cereal cropping on populations of indigenous rhizobia in an acid Brazilian Oxisol. Soil Biology and Biochemistry, 2002, 34, 477-485.	4.2	27
323	Rhizobium leguminosarum bv. viciae populations in soils with increasing heavy metal contamination: abundance, plasmid profiles, diversity and metal tolerance. Soil Biology and Biochemistry, 2002, 34, 519-529.	4.2	83
324	15N natural abundance as a tool for assessing N2-fixation of herbaceous, shrub and tree legumes in improved fallows. Soil Biology and Biochemistry, 2002, 34, 1059-1071.	4.2	80

#	Article	IF	CITATIONS
325	Short and medium term plant litter decomposition in a tropical Ultisol elucidated by physical fractionation in a dual 13C and 14C isotope study. Soil Biology and Biochemistry, 2002, 34, 1273-1281.	4.2	35
326	Occurrence and genetic diversity of rhizobia nodulating Sesbania sesban in African soils. Soil Biology and Biochemistry, 2002, 34, 1759-1768.	4.2	26
327	Do Species Mixtures Increase Above―and Belowground Resource Capture in Woody and Herbaceous Tropical Legumes?. Agronomy Journal, 2002, 94, 518-526.	0.9	40
328	Title is missing!. Plant and Soil, 2002, 245, 169-180.	1.8	44
329	The North-South divide! Organic wastes, or resources for nutrient management?. Agronomy for Sustainable Development, 2002, 22, 703-709.	0.8	28
330	Do Species Mixtures Increase Above- and Belowground Resource Capture in Woody and Herbaceous Tropical Legumes?. Agronomy Journal, 2002, 94, 518.	0.9	21
331	Genetic diversity of rhizobia from natural populations varies with the soil dilution sampled. Soil Biology and Biochemistry, 2001, 33, 841-843.	4.2	20
332	Synchronizing N Release from Organic Residues: Opportunities for Integrated Management of N. Scientific World Journal, The, 2001, 1, 880-886.	0.8	14
333	Symbiotic specificity of tropical tree rhizobia for host legumes. New Phytologist, 2001, 149, 495-507.	3.5	65
334	Management of organic matter in the tropics: translating theory into practice. Nutrient Cycling in Agroecosystems, 2001, 61, 63-75.	1.1	142
335	Implications of livestock feeding management on soil fertility in the smallholder farming systems of sub-Saharan Africa. Agriculture, Ecosystems and Environment, 2001, 84, 227-243.	2.5	56
336	Organic inputs for soil fertility management in tropical agroecosystems: application of an organic resource database. Agriculture, Ecosystems and Environment, 2001, 83, 27-42.	2.5	548
337	Management of organic matter in the tropics: translating theory into practice. , 2001, , 63-75.		6
338	Effects of Global Changes on Above- and Belowground Biodiversity in Terrestrial Ecosystems: Implications for Ecosystem Functioning. BioScience, 2000, 50, 1089.	2.2	165
339	Soyabeans and sustainable agriculture. Field Crops Research, 2000, 65, 137-149.	2.3	119
340	Interactions between residues of maize and pigeonpea and mineral N fertilizers during decomposition and N mineralization. Soil Biology and Biochemistry, 2000, 32, 679-688.	4.2	174
341	Interactions between Aboveground and Belowground Biodiversity in Terrestrial Ecosystems: Patterns, Mechanisms, and Feedbacks. BioScience, 2000, 50, 1049.	2.2	614
342	Biological N2 fixation and residual N benefit of pre-rice leguminous crops and green manures. Njas - Wageningen Journal of Life Sciences, 2000, 48, 19-29.	7.9	10

#	Article	lF	CITATIONS
343	Applicability of the natural 15N abundance technique to measure N2 fixation in Arachis hypogaea grown on an Ultisol. Njas - Wageningen Journal of Life Sciences, 2000, 48, 31-45.	7.9	10
344	Translating science into action for agricultural development in the tropics: an example from decomposition studies. Applied Soil Ecology, 2000, 14, 1-3.	2.1	22
345	Assessing Risks of Heavy Metal Toxicity in Agricultural Soils: Do Microbes Matter?. Human and Ecological Risk Assessment (HERA), 1999, 5, 683-689.	1.7	63
346	Title is missing!. Nutrient Cycling in Agroecosystems, 1999, 54, 99-112.	1.1	104
347	Testing the safety-net role of hedgerow tree roots by 15N placement at different soil depths. Agroforestry Systems, 1998, 43, 81-93.	0.9	71
348	N recovery from legume prunings and priming effects are governed by the residue quality. Plant and Soil, 1998, 205, 125-134.	1.8	37
349	Title is missing!. Plant and Soil, 1998, 204, 69-78.	1.8	19
350	Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biology and Biochemistry, 1998, 30, 1389-1414.	4.2	1,684
351	Substrate amendments can alter microbial dynamics and N availability from maize residues to subsequent crops. Soil Biology and Biochemistry, 1998, 30, 1281-1292.	4.2	29
352	Influence of decomposition of roots of tropical forage species on the availability of soil nitrogen. Soil Biology and Biochemistry, 1998, 30, 2099-2106.	4.2	66
353	Agricultural intensification, soil biodiversity and agroecosystem function. Applied Soil Ecology, 1997, 6, 3-16.	2.1	535
354	Agricultural intensification, soil biodiversity and ecosystem function in the tropics: the role of nitrogen-fixing bacteria. Applied Soil Ecology, 1997, 6, 55-76.	2.1	88
355	Regulating N release from legume tree prunings by mixing residues of different quality. Soil Biology and Biochemistry, 1997, 29, 1417-1426.	4.2	127
356	Decomposition and nitrogen release patterns of tree prunings and litter. Agroforestry Systems, 1997, 38, 77-97.	0.9	156
357	In search of the elusive "active―fraction of soil organic matter: Three size-density fractionation methods for tracing the fate of homogeneously 14C-labelled plant materials. Soil Biology and Biochemistry, 1996, 28, 89-99.	4.2	115
358	Estimating the contribution of legumes to soil organic matter build up in mixed communities of C3C4 plants. Soil Biology and Biochemistry, 1996, 28, 823-825.	4.2	22
359	Carbon turnover (δ13C) and nitrogen mineralization potential of particulate light soil organic matter after rainforest clearing. Soil Biology and Biochemistry, 1996, 28, 1555-1567.	4.2	83
360	The quest for a contemporary ecological dimension to soil biology. Soil Biology and Biochemistry, 1996, 28, 1549-1554.	4.2	133

KEN E GILLER

#	Article	IF	CITATIONS
361	Agricultural recycling of sewage sludge and the environment. Environmental Pollution, 1996, 94, 241.	3.7	1
362	Denitrification in Acid Soils, In a Leaching Tube Decomposition Study of Bean Residues. , 1996, , 543-547.		2
363	Nitrogen fixation by groundnut and soyabean and residual nitrogen benefits to rice in farmers' fields in Northeast Thailand. Plant and Soil, 1995, 175, 45-56.	1.8	93
364	Long-term effects of metals in sewage sludge on soils, microorganisms and plants. Journal of Industrial Microbiology, 1995, 14, 94-104.	0.9	368
365	Grain legumes and green manures as pre-rice crops in Northeast Thailand. Plant and Soil, 1995, 177, 111-126.	1.8	31
366	Diversity of Rhizobia Nodulating Phaseolus vulgaris L. in Two Kenyan Soils with Contrasting pHs. Applied and Environmental Microbiology, 1995, 61, 4016-4021.	1.4	125
367	Long-term effects of metal contamination on soil microorganisms. Soil Biology and Biochemistry, 1994, 26, 421-422.	4.2	13
368	Does phosphorus supply enhance soil-N mineralization in Brazilian pastures?. European Journal of Agronomy, 1994, 3, 339-345.	1.9	15
369	Estimates of the residual nitrogen benefit of groundnut to maize in Northeast Thailand. Plant and Soil, 1993, 154, 267-277.	1.8	60
370	A field evaluation using the 15N isotope dilution method of lines of Phaseolus vulgaris L. bred for increased nitrogen fixation. Plant and Soil, 1993, 152, 107-114.	1.8	33
371	Heavy metals from past applications of sewage sludge decrease the genetic diversity of rhizobium leguminosarum biovar trifolii populations. Soil Biology and Biochemistry, 1993, 25, 1485-1490.	4.2	99
372	Diagnosis and correction of soil nutrient problems of common bean (<i>Phaseolus vulgaris</i>) in the Usambara Mountains of Tanzania. Journal of Agricultural Science, 1993, 120, 233-240.	0.6	18
373	Toxic concentrations of iron and manganese in leaves of <i>phaseolus vulgaris</i> L. growing on freelyâ€drained soils of ph 6.5 in northern Tanzania. Communications in Soil Science and Plant Analysis, 1992, 23, 787-792.	0.6	7
374	Toxic concentrations of iron and manganese in leaves of Phaseolus vulgaris L. growing on freelyâ€drained soils of pH 6.5 in Northern Tanzania. Communications in Soil Science and Plant Analysis, 1992, 23, 1663-1669.	0.6	3
375	Effective Rhizobium leguminosarum biovar Trifolii present in five soils contaminated with heavy metals from long-term applications of sewage sludge or metal mine spoil. Soil Biology and Biochemistry, 1992, 24, 781-788.	4.2	83
376	Useful plants of neotropical origin and their wild relatives. Agricultural Systems, 1991, 35, 105-106.	3.2	0
377	Assessment and improvement of nitrogen fixation in tropical Phaseolus vulgaris L Soil Use and Management, 1990, 6, 82-84.	2.6	8
378	Absence of nitrogen fixation in clover grown on soil subject to long-term contamination with heavy metals is due to survival of only ineffective Rhizobium. Soil Biology and Biochemistry, 1989, 21, 841-848.	4.2	172

....

#	ARTICLE	IF	CITATIONS
379	Short-term measurements of uptake of nitrogen fixed in the rhizospheres of sorghum (Sorghum) Tj ETQq1 1 0.78	4314 rgBT	- /Overlock
380	Evaluation of 15N-isotope dilution for measurement of nitrogen fixation in chickpea (Cicer arietinum) Tj ETQq0 0	0.rgBT /Ov 2.gBT ∕Ov	erlock 10 T
381	Pollution by toxic metals on agricultural soils. Nature, 1988, 335, 676-676.	13.7	34
382	Nonâ€Nodulating Mutants in Common Bean. Crop Science, 1988, 28, 859-860.	0.8	33
383	Immobilized 15N-fertilizer sources improve the accuracy of field estimates of N2-fixation by isotope dilution. Soil Biology and Biochemistry, 1987, 19, 459-463.	4.2	44
384	Use and abuse of the acetylene reduction assay for measurement of "associative―nitrogen fixation. Soil Biology and Biochemistry, 1987, 19, 783-784.	4.2	41
385	Measurement of N2-fixation in field-grown pigeonpea [Cajanus cajan (L.) Millsp.] using15N-labelled fertilizer. Plant and Soil, 1987, 101, 107-113.	1.8	33
386	A comparison of nitrogen fixation in genotypes of groundnut (Arachis hypogaea L.) using 15N-isotope dilution. Biology and Fertility of Soils, 1987, 5, 23.	2.3	39
387	Peat and peat water chemistry of a flood-plain fen in Broadland, Norfolk, U.K Freshwater Biology, 1986, 16, 99-114.	1.2	16
388	Use of isotope dilution to measure nitrogen fixation associated with the roots of sorghum and millet genotypes. Plant and Soil, 1986, 90, 255-263.	1.8	23
389	The use of dialysis cells for investigating pore water composition in wetland substrata, with particular reference to dissolved iron and sulphide. Communications in Soil Science and Plant Analysis, 1984, 15, 707-716.	0.6	5
390	A method for measuring the transfer of fixed nitrogen from free-living bacteria to higher plants using 15N2. Journal of Microbiological Methods, 1984, 2, 307-316.	0.7	24
391	Status of aquatic macrophytes in an undrained area of fen in the Norfolk broads, England. Aquatic Botany, 1982, 12, 277-296.	0.8	16
392	Species Richness of Herbaceous Fen Vegetation in Broadland, Norfolk in Relation to the Quantity of Above-Ground Plant Material. Journal of Ecology, 1982, 70, 179.	1.9	177
393	Building Soil Nitrogen Capital in Africa. SSSA Special Publication Series, 0, , 151-192.	0.2	88
394	Integrated management of Striga gesnerioides in cowpea using resistant varieties, improved crop nutrition and rhizobium inoculants. Plant and Soil, 0, , 1.	1.8	5
395	Farming Systems, Food Security and Farmers' Awareness of Ecosystem Services in Inland Valleys: A Study From Côte d'Ivoire and Ghana. Frontiers in Sustainable Food Systems, 0, 6, .	1.8	4