
Tianmin He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5266616/publications.pdf Version: 2024-02-01

TIANMIN HE

#	Article	IF	CITATIONS
1	Synthesis and characterization of IT-electrolyte with perovskite structure La0.8Sr0.2Ga0.85Mg0.15O3â^î́r by glycine–nitrate combustion method. Journal of Alloys and Compounds, 2003, 348, 325-331.	5.5	168
2	Double-perovskites A2FeMoO6â^' (A= Ca, Sr, Ba) as anodes for solid oxide fuel cells. Journal of Power Sources, 2010, 195, 6356-6366.	7.8	166
3	SmBaCo2O5+x double-perovskite structure cathode material for intermediate-temperature solid-oxide fuel cells. Journal of Power Sources, 2008, 185, 754-758.	7.8	155
4	Double-perovskite PrBaCo2/3Fe2/3Cu2/3O5+l̂´as cathode material for intermediate-temperature solid-oxide fuel cells. Journal of Power Sources, 2013, 234, 244-251.	7.8	153
5	Performances of LnBaCo2O5+x–Ce0.8Sm0.2O1.9 composite cathodes for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2010, 195, 2174-2181.	7.8	143
6	Novel SrCo1â^'yNbyO3â^`î^ cathodes for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2010, 195, 3772-3778.	7.8	134
7	Characterization and evaluation of double perovskites LnBaCoFeO 5+δ (LnÂ=ÂPr and Nd) as intermediate-temperature solid oxide fuel cell cathodes. Journal of Power Sources, 2013, 243, 10-18.	7.8	107
8	Composite cathode La0.6Sr0.4Co0.2Fe0.8O3–Sm0.1Ce0.9O1.95–Ag for intermediate-temperature solid oxide fuel cells. Journal of Alloys and Compounds, 2005, 395, 322-325.	5.5	88
9	Cobalt-free perovskite cathode materials SrFe1â^'xTixO3â^'δ and performance optimization for intermediate-temperature solid oxide fuel cells. Electrochimica Acta, 2014, 123, 426-434.	5.2	84
10	Nanostructured palladium–La0.75Sr0.25Cr0.5Mn0.5O3/Y2O3–ZrO2 composite anodes for direct methane and ethanol solid oxide fuel cells. Journal of Power Sources, 2008, 185, 179-182.	7.8	80
11	A K ₂ Fe ₄ O ₇ superionic conductor for all-solid-state potassium metal batteries. Journal of Materials Chemistry A, 2018, 6, 8413-8418.	10.3	75
12	Novel nano-structured Pd+yttrium doped ZrO2 cathodes for intermediate temperature solid oxide fuel cells. Electrochemistry Communications, 2008, 10, 42-46.	4.7	72
13	Electrochemical performances of LaBaCuFeO5+x and LaBaCuCoO5+x as potential cathode materials for intermediate-temperature solid oxide fuel cells. Electrochemistry Communications, 2009, 11, 80-83.	4.7	72
14	A-site calcium-doped Pr 1â^'x Ca x BaCo 2 O 5+δ double perovskites as cathodes for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2016, 313, 134-141.	7.8	72
15	Cobalt-free cathode material SrFe0.9Nb0.1O3â^' for intermediate-temperature solid oxide fuel cells. Electrochemistry Communications, 2010, 12, 285-287.	4.7	67
16	SrCo1â^'Ti O3â^' as potential cathode materials for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2011, 196, 7420-7425.	7.8	66
17	Double-perovskites YBaCo2â^'xFexO5+l´ cathodes for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2011, 196, 3729-3735.	7.8	62
18	NdBaCo2/3Fe2/3Cu2/3O5+ double perovskite as a novel cathode material for CeO2- and LaGaO3-based solid oxide fuel cells. Journal of Power Sources, 2015, 273, 591-599.	7.8	58

#	Article	IF	CITATIONS
19	Performance of double perovskite symmetrical electrode materials Sr2TiFe1–Mo O6– (xÂ= 0.1, 0.2) for solid oxide fuel cells. Electrochimica Acta, 2018, 263, 217-227.	5.2	58
20	Single intermedium-temperature SOFC prepared by glycine–nitrate process. Journal of Alloys and Compounds, 2003, 353, 257-262.	5.5	57
21	The effect of Pr co-dopant on the performance of solid oxide fuel cells with Sm-doped ceria electrolyte. Journal of Alloys and Compounds, 2005, 389, 317-322.	5.5	56
22	The effect of Fe doping on the properties of SOFC electrolyte YSZ. Solid State Ionics, 2008, 179, 1620-1624.	2.7	56
23	Assessment of LnBaCo1.6Ni0.4O5+ (Ln = Pr, Nd, and Sm) double-perovskites as cathodes for intermediate-temperature solid-oxide fuel cells. Journal of Power Sources, 2013, 222, 288-293.	7.8	56
24	Study on the properties of Al2O3-doped (ZrO2)0.92(Y2O3)0.08 electrolyte. Solid State Ionics, 1999, 126, 277-283.	2.7	53
25	A-site deficient (La0.6Sr0.4)1–Co0.2Fe0.6Nb0.2O3– symmetrical electrode materials for solid oxide fuel cells. Electrochimica Acta, 2018, 270, 174-182.	5.2	53
26	La0.7Ca0.3CrO3–Ce0.8Gd0.2O1.9 composites as symmetrical electrodes for solid-oxide fuel cells. Journal of Power Sources, 2011, 196, 76-83.	7.8	52
27	Ba0.95La0.05Fe0.8Zn0.2O3-δ cobalt-free perovskite as a triple-conducting cathode for proton-conducting solid oxide fuel cells. Ceramics International, 2020, 46, 18216-18223.	4.8	51
28	Sm0.5Sr0.5CoO3 cathode material from glycine-nitrate process: Formation, characterization, and application in LaGaO3-based solid oxide fuel cells. Journal of Alloys and Compounds, 2008, 450, 400-404.	5.5	48
29	Performance of double-perovskite Sr2â^'xSmxMgMoO6â^'δ as solid-oxide fuel-cell anodes. Journal of Power Sources, 2011, 196, 8352-8359.	7.8	45
30	Pd-impregnated Sr1.9VMoO6– double perovskite as an efficient and stable anode for solid-oxide fuel cells operating on sulfur-containing syngas. Electrochimica Acta, 2018, 274, 91-102.	5.2	44
31	Electron doping of Sr ₂ FeMoO _{6â^'î´} as high performance anode materials for solid oxide fuel cells. Journal of Materials Chemistry A, 2019, 7, 733-743.	10.3	42
32	Resisting coking and sulfur poisoning of double perovskite Sr 2 TiFe 0.5 Mo 0.5 O 6–δ anode material for solid oxide fuel cells. International Journal of Hydrogen Energy, 2018, 43, 3280-3290.	7.1	41
33	Stability, compatibility and performance improvement of SrCo0.8Fe0.1Nb0.1O3â^' perovskite as a cathode for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2017, 42, 4465-4477.	7.1	40
34	Pd-Promoted La[sub 0.75]Sr[sub 0.25]Cr[sub 0.5]Mn[sub 0.5]O[sub 3]/YSZ Composite Anodes for Direct Utilization of Methane in SOFCs. Journal of the Electrochemical Society, 2008, 155, B811.	2.9	39
35	Layered Perovskite GdBaCuCoO[sub 5+î] Cathode Material for Intermediate-Temperature Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2010, 157, B628.	2.9	39
36	Highly carbon– and sulfur–tolerant Sr2TiMoO6â^'δ double perovskite anode for solid oxide fuel cells. International Journal of Hydrogen Energy, 2019, 44, 20404-20415.	7.1	39

#	Article	IF	CITATIONS
37	YBaCo2O5+δ-based double-perovskite cathodes for intermediate-temperature solid oxide fuel cells with simultaneously improved structural stability and thermal expansion properties. Electrochimica Acta, 2019, 297, 344-354.	5.2	39
38	Performance of double-proveskite YBa0.5Sr0.5Co2O5+l̂´as cathode material for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2011, 36, 6894-6898.	7.1	37
39	Cobalt-free double perovskite cathode GdBaFeNiO5+δ and electrochemical performance improvement by Ce0.8Sm0.2O1.9 impregnation for intermediate-temperature solid oxide fuel cells. Electrochimica Acta, 2015, 182, 682-692.	5.2	35
40	Improved thermal expansion and electrochemical performances of Ba0.6Sr0.4Co0.9Nb0.1O3â~δ–Gd0.1Ce0.9O1.95 composite cathodes for IT-SOFCs. International Journal of Hydrogen Energy, 2014, 39, 7972-7979.	7.1	34
41	Improved electrochemical performance and thermal expansion compatibility of LnBaCoFeO5+–Sm0.2Ce0.8O1.9 (Ln Pr and Nd) composite cathodes for IT-SOFCs. Journal of Alloys and Compounds, 2016, 685, 483-491.	5.5	34
42	SrCo0.7Fe0.2Ta0.1O3â^î^ perovskite as a cathode material for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2014, 39, 12074-12082.	7.1	33
43	Effects of Pr-deficiency on thermal expansion and electrochemical properties in Pr1â^'BaCo2O5+ cathodes for IT-SOFCs. Electrochimica Acta, 2016, 212, 522-534.	5.2	33
44	Combustion synthesis and properties of highly phase-pure perovskite electrolyte Co-doped La0.9Sr0.1Ga0.8Mg0.2O2.85 for IT-SOFCs. International Journal of Hydrogen Energy, 2010, 35, 294-300.	7.1	32
45	Nanostructured GDC-impregnated La0.7Ca0.3CrO3â [~] î´ symmetrical electrodes for solid oxide fuel cells operating on hydrogen and city gas. International Journal of Hydrogen Energy, 2011, 36, 3673-3680.	7.1	32
46	Electrical conductivity, thermal expansion and electrochemical performances of Ba-doped SrCo0.9Nb0.1O3â^î^´cathodes for IT-SOFCs. International Journal of Hydrogen Energy, 2013, 38, 7947-7956.	7.1	31
47	Molybdenum-based double perovskites A2CrMoO6â^' (AÂ= Ca, Sr, Ba) as anode materials for solid oxide fuel cells. Electrochimica Acta, 2018, 290, 440-450.	5.2	29
48	The effects on the structures and properties in the oxide-ion conductor La2Mo2O9 by partial substituting Ba for La. Journal of Alloys and Compounds, 2005, 388, 145-152.	5.5	28
49	Synthesis of nano-sized YSZ powders from glycine-nitrate process and optimization of their properties. Journal of Alloys and Compounds, 2005, 396, 309-315.	5.5	28
50	Layered oxygen-deficient double perovskite GdBaFe2O5+Î′ as electrode material for symmetrical solid-oxide fuel cells. Electrochimica Acta, 2021, 370, 137807.	5.2	28
51	Preparation, Electrical Conductivity, and Thermal Expansion Behavior of Dense Nd _{1â^'<i>x</i>} Ca <i>_x</i> CrO ₃ Solid Solutions. Journal of the American Ceramic Society, 2009, 92, 2259-2264.	3.8	26
52	Enhancing the sinterability and electrical properties of BaZr _{0.1} Ce _{0.7} Y _{0.2} O _{3â€î´} protonâ€conducting ceramic electrolyte. Journal of the American Ceramic Society, 2021, 104, 329-342.	3.8	25
53	Characterization of YSZ electrolyte membrane tubes prepared by a vacuum casting method. Journal of Alloys and Compounds, 2002, 337, 231-236.	5.5	24
54	Evaluation of Fe and Mn co-doped layered perovskite PrBaCo2/3Fe2/3Mn1/2O5+ as a novel cathode for intermediate-temperature solid-oxide fuel cell. Ceramics International, 2018, 44, 22489-22496.	4.8	24

#	Article	IF	CITATIONS
55	B‒site-ordered Co-based double perovskites Sr2Co1â^'Nb FeO5+ as active and stable cathodes for intermediate-temperature solid oxide fuel cells. Journal of Alloys and Compounds, 2020, 829, 154470.	5.5	23
56	Evaluation and performance optimization of double-perovskite LaSrCoTiO5+Î′ cathode for intermediate-temperature solid-oxide fuel cells. International Journal of Hydrogen Energy, 2016, 41, 21439-21449.	7.1	21
57	Performance and optimization of perovskite-type La1·4CaO·6CoMnO5+δ cathode for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2019, 44, 8467-8478.	7.1	21
58	Doped Lanthanum Gallate Film Solid Oxide Fuel Cells Fabricated On a Ni/YSZ Anode Support. Journal of the American Ceramic Society, 2006, 89, 2664-2667.	3.8	19
59	Sn–Dy–Cu Triply Doped BaZr _{0.1} Ce _{0.7} Y _{0.2} O _{3â^'Î} : A Chemically Stable and Highly Proton-Conductive Electrolyte for Low-Temperature Solid Oxide Fuel Cells. ACS Sustainable Chemistry and Engineering, 2022, 10, 5352-5362.	6.7	18
60	Performance of Pd-impregnated Sr1.9FeNb0.9Mo0.1O6-δ double perovskites as symmetrical electrodes for direct hydrocarbon solid oxide fuel cells. International Journal of Hydrogen Energy, 2019, 44, 31394-31405.	7.1	17
61	Structures, electrical and thermal expansion properties of Sr-doped La2Mo2O9 oxide-ion conductors. Journal of Alloys and Compounds, 2008, 464, 461-466.	5.5	15
62	SrCo1â^'Mo O3 perovskites as cathode materials for LaGaO3-based intermediate-temperature solid oxide fuel cells. Solid State Ionics, 2016, 288, 32-35.	2.7	13
63	Structures and properties of Sr-doped NdCrO3 solid solutions. Journal of Alloys and Compounds, 2008, 461, 628-632.	5.5	12
64	The Pr4+ ions in Mg doped PrGaO3 perovskites. Journal of Alloys and Compounds, 2004, 363, 61-63.	5.5	11
65	Electrical properties of thin-walled 8 mol% yttria-stabilized zirconia electrolyte tubes prepared by an improved slip casting method. Journal of Alloys and Compounds, 2002, 333, 231-236.	5.5	10
66	Assessment of performances of Ni–Cu–LSGM as anode materials for intermediate-temperature LaGaO3-based solid oxide fuel cells. Journal of Alloys and Compounds, 2005, 393, 292-298.	5.5	10
67	Sr- and Mo-deficiency Sr1.95TiMo1â^'O6– double perovskites as anodes for solid-oxide fuel cells using H2S-containing syngas. International Journal of Hydrogen Energy, 2020, 45, 23444-23454.	7.1	10
68	Manipulating the Activity and Thermal Compatibility of NdBaCoFeO _{5+δ} Cathodes for Intermediate-Temperature Solid Oxide Fuel Cells via Fluorine Doping. ACS Applied Energy Materials, 2022, 5, 481-491.	5.1	10
69	A potential interconnect material for solid oxide fuel cells: Nd0.75Ca0.25Cr0.98O3â~î´. Journal of Power Sources, 2010, 195, 977-983.	7.8	9
70	Enhanced Stability of BaCoO _{3-δ} Using Doping Process as a Cathode Material for IT-SOFCs. ECS Transactions, 2017, 78, 543-550.	0.5	9
71	Effect of Two Different ZnO Addition Strategies on the Sinterability and Conductivity of the BaZr _{0.4} Ce _{0.4} Y _{0.2} O _{3â^î(} Proton-Conducting Ceramic Electrolyte. ACS Applied Energy Materials, 2022, 5, 3369-3379.	5.1	9
72	Enhanced sintering and electrical properties of proton-conducting electrolytes through Cu doping in BaZr0.5Ce0.3Y0.2O3 Ceramics International, 2022, 48, 11793-11804.	4.8	7

#	Article	IF	CITATIONS
73	Characterization and evaluation of Ba-doped Ba x Sr 1â^'x Co 0.9 Sb 0.1 O 3â^î^´as cathode materials for LaGaO 3 -based solid oxide fuel cells. International Journal of Hydrogen Energy, 2017, 42, 6231-6242.	7.1	6
74	Crystallized phosphorus/carbon composites with tunable P C bonds by high pressure and high temperature. Journal of Physics and Chemistry of Solids, 2019, 130, 250-255.	4.0	6
75	Synergistic electron doping and ion conductive phase incorporating of SrCoO3- as desirable cathode materials for intermediate-temperature solid oxide fuel cells. Ceramics International, 2020, 46, 28332-28341.	4.8	6
76	NdBaFe _{2–<i>x</i>} Co _{<i>x</i>} O _{5+Î′} Double Perovskites with Exsolved Co–Fe Alloy Nanoparticles as Highly Efficient and Stable Anodes for Direct Hydrocarbon Solid Oxide Fuel Cells. ACS Applied Energy Materials, 2021, 4, 134-145.	5.1	6
77	Preparation and electrochemical performance of cobalt-free cathode material Ba0.5Sr0.5Fe0.9Nb0.1O3â~δfor intermediate-temperature solid oxide fuel cells. Chemical Research in Chinese Universities, 2014, 30, 806-810.	2.6	3
78	Formation and characterization of PrGa0.9Mg0.1O3 synthesized by a citric acid method. Journal of Alloys and Compounds, 2005, 393, 274-278.	5.5	1
79	Sintering, transport properties and thermal expansion of Cr-deficient Nd0.75Sr0.25Cr1â~δO3 solid solutions. Journal of Alloys and Compounds, 2010, 490, 448-452.	5.5	Ο