
Michelle Glass

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5266346/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Co-exposure of cannabinoids with amphetamines and biological, behavioural and health outcomes: a scoping review of animal and human studies. Psychopharmacology, 2022, 239, 1211-1230.	1.5	8
2	Delineating the interactions between the cannabinoid CB ₂ receptor and its regulatory effectors; l²â€arrestins and GPCR kinases. British Journal of Pharmacology, 2022, 179, 2223-2239.	2.7	8
3	Development of 3-(4-Chlorophenyl)-1-(phenethyl)urea Analogues as Allosteric Modulators of the Cannabinoid Type-1 Receptor: RTICBM-189 is Brain Penetrant and Attenuates Reinstatement of Cocaine-Seeking Behavior. Journal of Medicinal Chemistry, 2022, 65, 257-270.	2.9	7
4	Putative Synthetic Cannabinoids MEPIRAPIM, 5F-BEPIRAPIM (NNL-2), and Their Analogues Are T-Type Calcium Channel (Ca _V 3) Inhibitors. ACS Chemical Neuroscience, 2022, 13, 1395-1409.	1.7	4
5	Defining Steric Requirements at CB ₁ and CB ₂ Cannabinoid Receptors Using Synthetic Cannabinoid Receptor Agonists 5F-AB-PINACA, 5F-ADB-PINACA, PX-1, PX-2, NNL-1, and Their Analogues. ACS Chemical Neuroscience, 2022, 13, 1281-1295.	1.7	6
6	Synthetic cannabis: adverse events reported to the New Zealand Pharmacovigilance Centre. Clinical Toxicology, 2021, 59, 472-479.	0.8	11
7	A novel allosteric modulator of the cannabinoid CB1 receptor ameliorates hyperdopaminergia endophenotypes in rodent models. Neuropsychopharmacology, 2021, 46, 413-422.	2.8	9
8	Biased agonism at the cannabinoid receptors – Evidence from synthetic cannabinoid receptor agonists. Cellular Signalling, 2021, 78, 109865.	1.7	25
9	Exploring group size for statistical analysis of realâ€ŧime signalling experiments. British Journal of Pharmacology, 2021, 178, 3997-4004.	2.7	1
10	Pharmacological selection of cannabinoid receptor effectors: Signalling, allosteric modulation and bias. Neuropharmacology, 2021, 193, 108611.	2.0	20
11	NNL-3: A Synthetic Intermediate or a New Class of Hydroxybenzotriazole Esters with Cannabinoid Receptor Activity?. ACS Chemical Neuroscience, 2021, 12, 4020-4036.	1.7	7
12	Simultaneous analysis of 29 synthetic cannabinoids and metabolites, amphetamines, and cannabinoids in human whole blood by liquid chromatography–tandem mass spectrometry – A New Zealand perspective of use in 2018. Drug Testing and Analysis, 2020, 12, 195-214.	1.6	35
13	Inconsistencies in histone acetylation patterns among different HD model systems and HD post-mortem brains. Neurobiology of Disease, 2020, 146, 105092.	2.1	5
14	Exploring Stereochemical and Conformational Requirements at Cannabinoid Receptors for Synthetic Cannabinoids Related to SDB-006, 5F-SDB-006, CUMYL-PICA, and 5F-CUMYL-PICA. ACS Chemical Neuroscience, 2020, 11, 3672-3682.	1.7	14
15	Signalling profiles of a structurally diverse panel of synthetic cannabinoid receptor agonists. Biochemical Pharmacology, 2020, 175, 113871.	2.0	35
16	100 years of modelling ligand–receptor binding and response: A focus on GPCRs. British Journal of Pharmacology, 2020, 177, 1472-1484.	2.7	33
17	In vitro and in vivo pharmacological evaluation of the synthetic cannabinoid receptor agonist EG-018. Pharmacology Biochemistry and Behavior, 2020, 193, 172918.	1.3	11
18	Evaluation of the profiles of CB ₁ cannabinoid receptor signalling bias using joint kinetic modelling. British Journal of Pharmacology, 2020, 177, 3449-3463.	2.7	12

#	Article	IF	CITATIONS
19	Terpenoids From Cannabis Do Not Mediate an Entourage Effect by Acting at Cannabinoid Receptors. Frontiers in Pharmacology, 2020, 11, 359.	1.6	66
20	Synthesis and pharmacology of new psychoactive substance 5Fâ€CUMYLâ€P7AICA, a scaffold―hopping analog of synthetic cannabinoid receptor agonists 5Fâ€CUMYLâ€PICA and 5Fâ€CUMYLâ€PINACA. Drug Testing and Analysis, 2019, 11, 279-291.	1.6	45
21	Cannabinoid Receptor 2 (CB ₂) Signals via G-alpha-s and Induces IL-6 and IL-10 Cytokine Secretion in Human Primary Leukocytes. ACS Pharmacology and Translational Science, 2019, 2, 414-428.	2.5	49
22	Divalent cannabinoid-1 receptor ligands: A linker attachment point survey of SR141716A for development of high-affinity CB1R molecular probes. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 126644.	1.0	5
23	Do Toxic Synthetic Cannabinoid Receptor Agonists Have Signature in Vitro Activity Profiles? A Case Study of AMB-FUBINACA. ACS Chemical Neuroscience, 2019, 10, 4350-4360.	1.7	39
24	Dark Classics in Chemical Neuroscience: Δ ⁹ -Tetrahydrocannabinol. ACS Chemical Neuroscience, 2019, 10, 2160-2175.	1.7	55
25	Chromenopyrazole-based High Affinity, Selective Fluorescent Ligands for Cannabinoid Type 2 Receptor. ACS Medicinal Chemistry Letters, 2019, 10, 209-214.	1.3	26
26	CUMYL-4CN-BINACA Is an Efficacious and Potent Pro-Convulsant Synthetic Cannabinoid Receptor Agonist. Frontiers in Pharmacology, 2019, 10, 595.	1.6	32
27	Cannabinoid CB1 and CB2 Receptor-Mediated Arrestin Translocation: Species, Subtype, and Agonist-Dependence. Frontiers in Pharmacology, 2019, 10, 350.	1.6	58
28	The chemistry and pharmacology of putative synthetic cannabinoid receptor agonist (SCRA) new psychoactive substances (NPS) 5Fâ€PYâ€PICA, 5Fâ€PYâ€PINACA, and their analogs. Drug Testing and Analysis, 2019, 11, 976-989.	1.6	17
29	Modelâ€free and kinetic modelling approaches for characterising nonâ€equilibrium pharmacological pathway activity: Internalisation of cannabinoid CB ₁ receptors. British Journal of Pharmacology, 2019, 176, 2593-2607.	2.7	20
30	Do you feel it now? Route of administration and Δ9-tetrahydrocannabinol-like discriminative stimulus effects of synthetic cannabinoids in mice. NeuroToxicology, 2019, 73, 161-167.	1.4	21
31	An intact model for quantifying functional selectivity. Scientific Reports, 2019, 9, 2557.	1.6	3
32	An evaluation of the operational model when applied to quantify functional selectivity. British Journal of Pharmacology, 2018, 175, 1654-1668.	2.7	18
33	Alkyl indole-based cannabinoid type 2 receptor tools: Exploration of linker and fluorophore attachment. European Journal of Medicinal Chemistry, 2018, 145, 770-789.	2.6	15
34	Development of selective, fluorescent cannabinoid type 2 receptor ligands based on a 1,8-naphthyridin-2-(1 <i>H</i>)-one-3-carboxamide scaffold. MedChemComm, 2018, 9, 2055-2067.	3.5	14
35	Cannabinoid Receptor 2 Signalling Bias Elicited by 2,4,6-Trisubstituted 1,3,5-Triazines. Frontiers in Pharmacology, 2018, 9, 1202.	1.6	20
36	Altered Amygdala Excitation and CB1 Receptor Modulation of Aggressive Behavior in the Neuroligin-3R451C Mouse Model of Autism. Frontiers in Cellular Neuroscience, 2018, 12, 234.	1.8	45

#	Article	IF	CITATIONS
37	Gα _s signalling of the CB ₁ receptor and the influence of receptor number. British Journal of Pharmacology, 2017, 174, 2545-2562.	2.7	75
38	Cannabinoid CB ₁ and CB ₂ Receptor Signaling and Bias. Cannabis and Cannabis and Cannabinoid Research, 2017, 2, 48-60.	1.5	165
39	Cannabinoid CB2 receptor ligand profiling reveals biased signalling and off-target activity. Nature Communications, 2017, 8, 13958.	5.8	265
40	Real-Time Measurement of Cannabinoid Receptor-Mediated cAMP Signaling. Methods in Enzymology, 2017, 593, 43-59.	0.4	14
41	Affinity and Efficacy Studies of Tetrahydrocannabinolic Acid A at Cannabinoid Receptor Types One and Two. Cannabis and Cannabinoid Research, 2017, 2, 87-95.	1.5	47
42	The Endocannabinoid System and Human Brain Functions. , 2017, , 115-186.		3
43	Functional Selectivity at Cannabinoid Receptors. Advances in Pharmacology, 2017, 80, 207-221.	1.2	26
44	Is the Cannabinoid CB 2 Receptor a Major Regulator of the Neuroinflammatory Axis of the Neurovascular Unit in Humans?. Advances in Pharmacology, 2017, 80, 367-396.	1.2	9
45	Signaling and Regulation of the Cannabinoid CB 1 Receptor. , 2017, , 564-572.		0
46	Allosteric Modulation of the Cannabinoid CB1 Receptor. , 2017, , 573-583.		1
47	Sulfation of the FLAG epitope is affected by co-expression of G protein-coupled receptors in a mammalian cell model. Scientific Reports, 2016, 6, 27316.	1.6	10
48	The 2-alkyl-2H-indazole regioisomers of synthetic cannabinoids AB-CHMINACA, AB-FUBINACA, AB-PINACA, and 5F-AB-PINACA are possible manufacturing impurities with cannabimimetic activities. Forensic Toxicology, 2016, 34, 286-303.	1.4	35
49	Identification of <i>N</i> â€arachidonoyl dopamine as a highly biased ligand at cannabinoid CB ₁ receptors. British Journal of Pharmacology, 2016, 173, 115-127.	2.7	23
50	Pharmacology of Valinate and <i>tert</i> -Leucinate Synthetic Cannabinoids 5F-AMBICA, 5F-AMB, 5F-ADB, AMB-FUBINACA, MDMB-FUBINACA, MDMB-CHMICA, and Their Analogues. ACS Chemical Neuroscience, 2016, 7, 1241-1254.	1.7	214
51	One for the Price of Two…Are Bivalent Ligands Targeting Cannabinoid Receptor Dimers Capable of Simultaneously Binding to both Receptors?. Trends in Pharmacological Sciences, 2016, 37, 353-363.	4.0	23
52	GPR18 undergoes a high degree of constitutive trafficking but is unresponsive to N-Arachidonoyl Glycine. PeerJ, 2016, 4, e1835.	0.9	57
53	Structure–activity relationships of synthetic cannabinoid designer drug RCS-4 and its regioisomers and C4 homologues. Forensic Toxicology, 2015, 33, 355-366.	1.4	26
54	Biased Agonism and Biased Allosteric Modulation at the CB ₁ Cannabinoid Receptor. Molecular Pharmacology, 2015, 88, 368-379.	1.0	118

#	Article	IF	CITATIONS
55	Distinct Temporal Fingerprint for Cyclic Adenosine Monophosphate (cAMP) Signaling of Indole-2-carboxamides as Allosteric Modulators of the Cannabinoid Receptors. Journal of Medicinal Chemistry, 2015, 58, 5979-5988.	2.9	28
56	Pharmacology of Indole and Indazole Synthetic Cannabinoid Designer Drugs AB-FUBINACA, ADB-FUBINACA, AB-PINACA, ADB-PINACA, 5F-AB-PINACA, 5F-ADB-PINACA, ADBICA, and 5F-ADBICA. ACS Chemical Neuroscience, 2015, 6, 1546-1559.	1.7	202
57	Effects of Bioisosteric Fluorine in Synthetic Cannabinoid Designer Drugs JWH-018, AM-2201, UR-144, XLR-11, PB-22, 5F-PB-22, APICA, and STS-135. ACS Chemical Neuroscience, 2015, 6, 1445-1458.	1.7	167
58	Increasing the flexibility of the LANCE cAMP detection kit. Journal of Pharmacological and Toxicological Methods, 2015, 71, 42-45.	0.3	7
59	Effects of the Parkinsonian toxin MPP+ on electrophysiological properties of nigral dopaminergic neurons. NeuroToxicology, 2014, 45, 1-11.	1.4	26
60	Cannabinoid receptor CB2 is expressed on vascular cells, but not astroglial cells in the post-mortem human Huntington's disease brain. Journal of Chemical Neuroanatomy, 2014, 59-60, 62-71.	1.0	31
61	Development of positive control tissue for in situ hybridisation using Alvetex scaffolds. Journal of Neuroscience Methods, 2014, 238, 70-77.	1.3	4
62	Adenosine kinase, glutamine synthetase and EAAT2 as gene therapy targets for temporal lobe epilepsy. Gene Therapy, 2014, 21, 1029-1040.	2.3	24
63	Realâ€time characterization of cannabinoid receptor 1 (<scp>CB</scp> ₁) allosteric modulators reveals novel mechanism of action. British Journal of Pharmacology, 2013, 170, 893-907.	2.7	97
64	The Synthesis and Pharmacological Evaluation of Adamantane-Derived Indoles: Cannabimimetic Drugs of Abuse. ACS Chemical Neuroscience, 2013, 4, 1081-1092.	1.7	80
65	M1 Muscarinic Receptor Activation Mediates Cell Death in M1-HEK293 Cells. PLoS ONE, 2013, 8, e72011.	1.1	14
66	Sensitive and Accurate Quantification of Human Leukocyte Migration Using High-Content Discovery-1 Imaging System and ATPlite Assay. Journal of Biomolecular Screening, 2012, 17, 386-393.	2.6	8
67	A new cannabinoid CB ₂ receptor agonist HUâ€910 attenuates oxidative stress, inflammation and cell death associated with hepatic ischaemia/reperfusion injury. British Journal of Pharmacology, 2012, 165, 2462-2478.	2.7	90
68	Real-time profiling of NK cell killing of human astrocytes using xCELLigence technology. Journal of Neuroscience Methods, 2011, 200, 173-180.	1.3	48
69	Cannabinoid receptor 2 undergoes Rab5-mediated internalization and recycles via a Rab11-dependent pathway. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 1554-1560.	1.9	72
70	Characterization of NTera2/D1 cells as a model system for the investigation of cannabinoid function in human neurons and astrocytes. Journal of Neuroscience Research, 2011, 89, 1685-1697.	1.3	22
71	The therapeutic potential of G-protein coupled receptors in Huntington's disease. , 2010, 128, 305-323.		15
72	Cannabinoid Receptor 1 trafficking and the role of the intracellular pool: Implications for therapeutics. Biochemical Pharmacology, 2010, 80, 1050-1062.	2.0	56

#	Article	IF	CITATIONS
73	The endocannabinoid system as a target for the treatment of neurodegenerative disease. British Journal of Pharmacology, 2010, 160, 480-498.	2.7	161
74	Neuroprotective potential of CB ₁ receptor agonists in an <i>in vitro</i> model of Huntington's disease. British Journal of Pharmacology, 2010, 160, 747-761.	2.7	60
75	Detailed Characterisation of CB2 Receptor Protein Expression in Peripheral Blood Immune Cells from Healthy Human Volunteers Using Flow Cytometry. International Journal of Immunopathology and Pharmacology, 2010, 23, 25-34.	1.0	81
76	Behavioural and molecular consequences of chronic cannabinoid treatment in Huntington's disease transgenic mice. Neuroscience, 2010, 170, 324-336.	1.1	65
77	Cannabinoid Receptors: A brief history and "what's hot" Frontiers in Bioscience - Landmark, 2009, Volume, 944.	3.0	59
78	Altered CB1 receptor and endocannabinoid levels precede motor symptom onset in a transgenic mouse model of Huntington's disease. Neuroscience, 2009, 163, 456-465.	1.1	97
79	Cannabinoid (CB1), GABAA and GABAB receptor subunit changes in the globus pallidus in Huntington's disease. Journal of Chemical Neuroanatomy, 2009, 37, 266-281.	1.0	83
80	Chapter 4 Anandamide Receptor Signal Transduction. Vitamins and Hormones, 2009, 81, 79-110.	0.7	14
81	Specific detection of CB1 receptors; cannabinoid CB1 receptor antibodies are not all created equal!. Journal of Neuroscience Methods, 2008, 171, 78-86.	1.3	113
82	High throughput quantification of mutant huntingtin aggregates. Journal of Neuroscience Methods, 2008, 171, 174-179.	1.3	18
83	A NOVEL HIGHâ€THROUGHPUT ASSAY FOR THE QUANTITATIVE ASSESSMENT OF RECEPTOR TRAFFICKING. Clinical and Experimental Pharmacology and Physiology, 2008, 35, 1377-1382.	0.9	26
84	Nuclear Localisation of the Endocannabinoid Metabolizing Enzyme Fatty Acid Amide Hydrolase (FAAH) in Invasive Trophoblasts and an Association with Recurrent Miscarriage. Placenta, 2008, 29, 970-975.	0.7	27
85	Cannabinoids stimulate prostaglandin production by human gestational tissues through a tissue- and CB1-receptor-specific mechanism. American Journal of Physiology - Endocrinology and Metabolism, 2008, 294, E352-E356.	1.8	47
86	The Cannabinoid CB2 Receptor as a Target for Inflammation-Dependent Neurodegeneration. Current Neuropharmacology, 2007, 5, 73-80.	1.4	268
87	Cerebral hypoxia-ischemia and middle cerebral artery occlusion induce expression of the cannabinoid CB2 receptor in the brain. Neuroscience Letters, 2007, 412, 114-117.	1.0	124
88	Metaâ€analysis of cannabinoid ligand binding affinity and receptor distribution: interspecies differences. British Journal of Pharmacology, 2007, 152, 583-593.	2.7	209
89	A shifted repertoire of endocannabinoid genes in the zebrafish (Danio rerio). Molecular Genetics and Genomics, 2007, 277, 555-570.	1.0	40
90	Evolutionary origins of the endocannabinoid system. Gene, 2006, 370, 64-74.	1.0	153

#	Article	IF	CITATIONS
91	A novel population of progenitor cells expressing cannabinoid receptors in the subependymal layer of the adult normal and Huntington's disease human brain. Journal of Chemical Neuroanatomy, 2006, 31, 210-215.	1.0	36
92	Cannabinoid receptors in invertebrates. Journal of Evolutionary Biology, 2006, 19, 366-373.	0.8	56
93	Differential activation of G-proteins by μ -opioid receptor agonists. British Journal of Pharmacology, 2006, 147, 671-680.	2.7	64
94	Induction of Krox-24 by Endogenous Cannabinoid Type 1 Receptors in Neuro2A Cells Is Mediated by the MEK-ERK MAPK Pathway and Is Suppressed by the Phosphatidylinositol 3-Kinase Pathway. Journal of Biological Chemistry, 2006, 281, 29085-29095.	1.6	48
95	Concurrent Stimulation of Cannabinoid CB1 and Dopamine D2 Receptors Enhances Heterodimer Formation: A Mechanism for Receptor Cross-Talk?. Molecular Pharmacology, 2005, 67, 1697-1704.	1.0	318
96	Misidentification of prostamides as prostaglandins. Journal of Lipid Research, 2005, 46, 1364-1368.	2.0	36
97	Characterization of the Endocannabinoid System in Early Human Pregnancy. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 5168-5174.	1.8	72
98	Cannabis, cannabinoids and reproduction. Prostaglandins Leukotrienes and Essential Fatty Acids, 2004, 70, 189-197.	1.0	172
99	Delayed onset of huntington′s disease in mice in an enriched environment correlates with delayed loss of cannabinoid CB1 receptors. Neuroscience, 2004, 123, 207-212.	1.1	131
100	Functional mapping of cannabinoid receptor homologs in mammals, other vertebrates, and invertebrates. Gene, 2003, 312, 297-303.	1.0	53
101	CB1 and CB2 receptor-mediated signalling: a focus on endocannabinoids. Prostaglandins Leukotrienes and Essential Fatty Acids, 2002, 66, 161-171.	1.0	128
102	The role of Cannabinoids in neurodegenerative diseases. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2001, 25, 743-765.	2.5	65
103	Cannabinoid receptors are absent in insects. Journal of Comparative Neurology, 2001, 436, 423-429.	0.9	97
104	Immunomodulation by cannabinoids is absent in mice deficient for the cannabinoid CB2 receptor. European Journal of Pharmacology, 2000, 396, 141-149.	1.7	480
105	The pattern of neurodegeneration in Huntington's disease: a comparative study of cannabinoid, dopamine, adenosine and GABAA receptor alterations in the human basal ganglia in Huntington's disease. Neuroscience, 2000, 97, 505-519.	1.1	492
106	Agonist Selective Regulation of G Proteins by Cannabinoid CB ₁ and CB ₂ Receptors. Molecular Pharmacology, 1999, 56, 1362-1369.	1.0	268
107	CANNABINOID RECEPTORS AND THEIR ENDOGENOUS AGONISTS. Annual Review of Pharmacology and Toxicology, 1998, 38, 179-200.	4.2	348
108	Cannabinoid receptors in the human brain: a detailed anatomical and quantitative autoradiographic study in the fetal, neonatal and adult human brain. Neuroscience, 1997, 77, 299-318.	1.1	903

#	Article	IF	CITATIONS
109	Modulation of Neurotransmission by Cannabinoids in the Basal Ganglia. European Journal of Neuroscience, 1997, 9, 199-203.	1.2	67
110	Loss of A1 adenosine receptors in human temporal lobe epilepsy. Brain Research, 1996, 710, 56-68.	1.1	120
111	Localisation of the adenosine uptake site in the human brain: a comparison with the distribution of adenosine Al receptors. Brain Research, 1996, 710, 79-91.	1.1	35
112	Induction of the Krox 24 transcription factor in striosomes by a cannabinoid agonist. NeuroReport, 1995, 6, 241-245.	0.6	29
113	Neurochemical and morphological changes associated with human epilepsy. Brain Research Reviews, 1995, 21, 29-41.	9.1	89
114	c-fos antisense reduces expression of Krox 24 in rat caudate and neocortex. Cellular and Molecular Neurobiology, 1994, 14, 395-405.	1.7	30
115	Loss of cannabinoid receptors in the substantia nigra in huntington's disease. Neuroscience, 1993, 56, 523-527.	1.1	216
116	Covalent cannabinoid receptor ligands – structural insight and selectivity challenges. RSC Medicinal Chemistry, 0, , .	1.7	0