
Angela Pearson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5266141/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Canid herpesvirus 1 Preferentially Infects Polarized Madin-Darby Canine Kidney Cells from the Basolateral Surface. Viruses, 2022, 14, 1291.	1.5	1
2	Entry of the <i>Varicellovirus Canid herpesvirus 1</i> into <scp>Madin–Darby</scp> canine kidney epithelial cells is <scp>pH</scp> â€independent and occurs via a macropinocytosisâ€iike mechanism but without increase in fluid uptake. Cellular Microbiology, 2021, 23, e13398.	1.1	2
3	Rel-Dependent Immune and Central Nervous System Mechanisms Control Viral Replication and Inflammation during Mouse Herpes Simplex Encephalitis. Journal of Immunology, 2019, 202, 1479-1493.	0.4	10
4	A Mutation in the <i>UL24</i> Gene Abolishes Expression of the Newly Identified UL24.5 Protein of Herpes Simplex Virus 1 and Leads to an Increase in Pathogenicity in Mice. Journal of Virology, 2018, 92, .	1.5	6
5	Herpes Simplex Virus 1 UL24 Abrogates the DNA Sensing Signal Pathway by Inhibiting NF-ήB Activation. Journal of Virology, 2017, 91, .	1.5	95
6	Dok-1 and Dok-2 Are Required To Maintain Herpes Simplex Virus 1-Specific CD8 ⁺ T Cells in a Murine Model of Ocular Infection. Journal of Virology, 2017, 91, .	1.5	10
7	Herpes simplex virus 1 infection of T cells causes VP11/12-dependent phosphorylation and degradation of the cellular protein Dok-2. Virology, 2017, 511, 66-73.	1.1	6
8	Regulation of viral gene expression by the herpes simplex virus 1 UL24 protein (HSV-1 UL24 inhibits) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf
9	Upstream binding factor inhibits herpes simplex virus replication. Virology, 2015, 483, 108-116.	1.1	3
10	Mutation of UL24 impedes the dissemination of acute herpes simplex virus 1 infection from the cornea to neurons of trigeminal ganglia. Journal of General Virology, 2015, 96, 2794-2805.	1.3	11

11	Visualization of Mouse Neuronal Ganglia Infected by Herpes Simplex Virus 1 (HSV-1) Using Multimodal Non-Linear Optical Microscopy. PLoS ONE, 2014, 9, e105103.	1.1	5
12	The UL24 protein of herpes simplex virus 1 affects the sub-cellular distribution of viral glycoproteins involved in fusion. Virology, 2013, 444, 263-273.	1.1	14
13	Genome-Wide Mouse Mutagenesis Reveals CD45-Mediated T Cell Function as Critical in Protective Immunity to HSV-1. PLoS Pathogens, 2013, 9, e1003637.	2.1	20
14	Involvement of the UL24 protein in herpes simplex virus 1-induced dispersal of B23 and in nuclear egress. Virology, 2011, 412, 341-348.	1.1	42
15	Role of the viral protein UL24 in nucleolar modifications induced by herpes simplex virus 1. BMC Proceedings, 2011, 5, .	1.8	3

16 The Ribonucleotide Reductase R1 Subunits of Herpes Simplex Virus 1 and 2 Protect Cells against Poly(I ·) Tj ETQqQ 0 0 rgBT /Overlock 1

17	Conserved Residues in the UL24 Protein of Herpes Simplex Virus 1 Are Important for Dispersal of the Nucleolar Protein Nucleolin. Journal of Virology, 2010, 84, 109-118.	1.5	35
18	Conserved Residues in the UL24 Protein of Herpes Simplex Virus 1 Are Important for Dispersal of the Nucleolar Protein Nucleolin. Journal of Virology, 2010, 84, 10436-10436.	1.5	3

ANGELA PEARSON

#	Article	IF	CITATIONS
19	Relocalization of Upstream Binding Factor to Viral Replication Compartments Is UL24 Independent and Follows the Onset of Herpes Simplex Virus 1 DNA Synthesis. Journal of Virology, 2010, 84, 4810-4815.	1.5	10
20	Differential importance of highly conserved residues in UL24 for herpes simplex virus 1 replication in vivo and reactivation. Journal of General Virology, 2010, 91, 1109-1116.	1.3	22
21	The conserved N-terminal domain of herpes simplex virus 1 UL24 protein is sufficient to induce the spatial redistribution of nucleolin. Journal of General Virology, 2008, 89, 1142-1151.	1.3	34
22	Involvement of UL24 in herpes-simplex-virus-1-induced dispersal of nucleolin. Virology, 2007, 363, 397-409.	1.1	67
23	Failure of Thymidine Kinase-Negative Herpes Simplex Virus To Reactivate from Latency following Efficient Establishment. Journal of Virology, 2004, 78, 520-523.	1.5	43
24	ICP27 Selectively Regulates the Cytoplasmic Localization of a Subset of Viral Transcripts in Herpes Simplex Virus Type 1-Infected Cells. Journal of Virology, 2004, 78, 23-32.	1.5	28
25	Phosphorylation of the RNA polymerase II carboxyl-terminal domain in human cytomegalovirus-infected cells and in vitro by the viral UL97 protein kinase. Virology, 2004, 324, 184-193.	1.1	60
26	Identification, Localization, and Regulation of Expression of the UL24 Protein of Herpes Simplex Virus Type 1. Journal of Virology, 2002, 76, 10821-10828.	1.5	49
27	Activation of the Murine Dihydrofolate Reductase Promoter by E2F1. Journal of Biological Chemistry, 1999, 274, 15883-15891.	1.6	47
28	Modular organization of the E2F1 activation domain and its interaction with general transcription factors TBP and TFIIH. Oncogene, 1997, 15, 2643-2658.	2.6	52
29	Binding of basal transcription factor TFIIH to the acidic activation domains of VP16 and p53 Molecular and Cellular Biology, 1994, 14, 7013-7024.	1.1	369
30	The 5′ noncoding region sequence of the Choristoneura biennis entomopoxvirus spheroidin gene functions as an efficient late promoter in the mammalian vaccinia expression system. Virology, 1991, 180, 561-566.	1.1	23