Jyrki Heinämäki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5265808/publications.pdf

Version: 2024-02-01

58 1,337
papers citations

1,337 21 citations h-index

35 g-index

58 58 all docs docs citations

58 tions times ranked 1692 citing authors

#	Article	IF	CITATIONS
1	Berberine-loaded liposomes for oral delivery: Preparation, physicochemical characterization and in-vivo evaluation in an endogenous hyperlipidemic animal model. International Journal of Pharmaceutics, 2022, 616, 121525.	2.6	11
2	Physicomechanical characterization and tablet compression of theophylline nanofibrous mats prepared by conventional and ultrasound enhanced electrospinning. International Journal of Pharmaceutics, 2022, 616, 121558.	2.6	14
3	Identifying Potential Drug-Related Problems Among Geriatric Patients With Use of an Integrated Clinical Decision Support Tool. Frontiers in Pharmacology, 2022, 13, 761787.	1.6	1
4	Preparation and characterization of hot-melt extruded polycaprolactone-based filaments intended for 3D-printing of tablets. European Journal of Pharmaceutical Sciences, 2021, 158, 105619.	1.9	33
5	Use of artificial cells as drug carriers. Materials Chemistry Frontiers, 2021, 5, 6672-6692.	3.2	20
6	Electrospun amphiphilic nanofibers for stigmasterolloaded delivery systems. , 2021, , .		0
7	Nanoformulation and Evaluation of Oral Berberine-Loaded Liposomes. Molecules, 2021, 26, 2591.	1.7	23
8	Spray Drying of Chitosan Acid Salts: Process Development, Scaling Up and Physicochemical Material Characterization. Marine Drugs, 2021, 19, 329.	2.2	1
9	Effects of crosslinking on the physical solid-state and dissolution properties of 3D-printed theophylline tablets. Annals of 3D Printed Medicine, 2021, 4, 100031.	1.6	3
10	In Vitro Acetylcholinesterase Inhibitory and Antioxidant Activity of (i>Alphonsea tonkinensis (i>A.DC. Natural Product Communications, 2021, 16, 1934578X2110421.	0.2	1
11	<i>chiro</i> -lnositol Derivatives from <i>Chisocheton paniculatus</i> Showing Inhibition of Nitric Oxide Production. Journal of Natural Products, 2020, 83, 1201-1206.	1.5	10
12	A Mini-Review: Needleless Electrospinning of Nanofibers for Pharmaceutical and Biomedical Applications. Processes, 2020, 8, 673.	1.3	85
13	Flavonoids and alkaloids from the rhizomes of Zephyranthes ajax Hort. and their cytotoxicity. Scientific Reports, 2020, 10, 22193.	1.6	7
14	Preformulation Study of Electrospun Haemanthamine-Loaded Amphiphilic Nanofibers Intended for a Solid Template for Self-Assembled Liposomes. Pharmaceutics, 2019, 11, 499.	2.0	11
15	Comparison of Traditional and Ultrasound-Enhanced Electrospinning in Fabricating Nanofibrous Drug Delivery Systems. Pharmaceutics, 2019, 11, 495.	2.0	20
16	Quasi-Dynamic Dissolution of Electrospun Polymeric Nanofibers Loaded with Piroxicam. Pharmaceutics, 2019, 11, 491.	2.0	6
17	FEM Modelling of Ultrasound Enhanced Electrospinning (USES)., 2019,,.		1
18	Older adults using multi-dose dispensing exposed to risks of potentially inappropriate medications. Research in Social and Administrative Pharmacy, 2019, 15, 1102-1106.	1.5	7

#	Article	IF	Citations
19	Interdependence of particle properties and bulk powder behavior of indomethacin in quench-cooled molten two-phase solid dispersions. International Journal of Pharmaceutics, 2018, 541, 188-197.	2.6	6
20	Ultrasound-enhanced electrospinning. Scientific Reports, 2018, 8, 4437.	1.6	32
21	Melt-electrospinning as a method to improve the dissolution and physical stability of a poorly water-soluble drug. European Journal of Pharmaceutical Sciences, 2018, 121, 260-268.	1.9	10
22	Development of Oromucosal Dosage Forms by Combining Electrospinning and Inkjet Printing. Molecular Pharmaceutics, 2017, 14, 808-820.	2.3	31
23	Suberin Fatty Acids from Outer Birch Bark: Isolation and Physical Material Characterization. Journal of Natural Products, 2017, 80, 916-924.	1.5	17
24	Development of electrosprayed artesunate-loaded core–shell nanoparticles. Drug Development and Industrial Pharmacy, 2017, 43, 1134-1142.	0.9	14
25	Atomic layer deposition—A novel method for the ultrathin coating of minitablets. International Journal of Pharmaceutics, 2017, 531, 47-58.	2.6	15
26	The formation and physical stability of two-phase solid dispersion systems of indomethacin in supercooled molten mixtures with different matrix formers. European Journal of Pharmaceutical Sciences, 2017, 97, 237-246.	1.9	17
27	Perception of the Professional Knowledge of and Education on the Medical Technology Products among the Pharmacists in the Baltic and Nordic Countries—A Cross-Sectional Exploratory Study. Pharmacy (Basel, Switzerland), 2016, 4, 29.	0.6	1
28	Development of a novel electrospun nanofibrous delivery system for poorly water-soluble \hat{l}^2 -sitosterol. Asian Journal of Pharmaceutical Sciences, 2016, 11, 500-506.	4.3	18
29	Development of Suberin Fatty Acids and Chloramphenicol-Loaded Antimicrobial Electrospun Nanofibrous Mats Intended for Wound Therapy. Journal of Pharmaceutical Sciences, 2016, 105, 1239-1247.	1.6	22
30	Towards improved solubility of poorly water-soluble drugs: cryogenic co-grinding of piroxicam with carrier polymers. Drug Development and Industrial Pharmacy, 2016, 42, 378-388.	0.9	19
31	Suberin fatty acids isolated from outer birch bark improve moisture barrier properties of cellulose ether films intended for tablet coatings. International Journal of Pharmaceutics, 2015, 489, 91-99.	2.6	16
32	Electrospun nanofibers as a potential controlled-release solid dispersion system for poorly water-soluble drugs. International Journal of Pharmaceutics, 2015, 479, 252-260.	2.6	85
33	Amorphous solid dispersions of piroxicam and Soluplus®: Qualitative and quantitative analysis of piroxicam recrystallization during storage. International Journal of Pharmaceutics, 2015, 486, 306-314.	2.6	60
34	The role of community pharmacies in counseling of personal medical devices and drug-delivery products in Estonia. Expert Review of Medical Devices, 2015, 12, 487-493.	1.4	3
35	Soluplus Graft Copolymer: Potential Novel Carrier Polymer in Electrospinning of Nanofibrous Drug Delivery Systems for Wound Therapy. BioMed Research International, 2014, 2014, 1-7.	0.9	46
36	Nanometer depth resolution in 3D topographic analysis of drug-loaded nanofibrous mats without sample preparation. International Journal of Pharmaceutics, 2014, 462, 29-37.	2.6	10

#	Article	IF	CITATIONS
37	Solid-state dependent dissolution and oral bioavailability of piroxicam in rats. European Journal of Pharmaceutical Sciences, 2013, 48, 47-54.	1.9	21
38	Direct Compression of Cellulose and Lignin Isolated by a New Catalytic Treatment. AAPS PharmSciTech, 2013, 14, 1129-1136.	1.5	6
39	Water-mediated solid-state transformation of a polymorphic drug during aqueous-based drug-layer coating of pellets. International Journal of Pharmaceutics, 2013, 456, 41-48.	2.6	10
40	From acacia honey monosaccharide content to a new external binary plasticizer applicable in aqueous whey protein films. Food and Bioproducts Processing, 2013, 91, 440-446.	1.8	4
41	Towards more reliable automated multi-dose dispensing: retrospective follow-up study on medication dose errors and product defects. Drug Development and Industrial Pharmacy, 2013, 39, 489-498.	0.9	6
42	Solid-state properties of softwood lignin and cellulose isolated by a new acid precipitation method. International Journal of Biological Macromolecules, 2012, 51, 939-945.	3.6	25
43	Insight into the solubility and dissolution behavior of piroxicam anhydrate and monohydrate forms. International Journal of Pharmaceutics, 2012, 431, 111-119.	2.6	32
44	Effects of Spray Drying on Physicochemical Properties of Chitosan Acid Salts. AAPS PharmSciTech, 2011, 12, 637-649.	1.5	59
45	Effects of moisture on tablet compression of chitin. Carbohydrate Polymers, 2011, 86, 477-483.	5.1	15
46	Effect of Moisture on Powder Flow Properties of Theophylline. Pharmaceutics, 2010, 2, 275-290.	2.0	54
47	Scratch resistance of plasticized hydroxypropyl methylcellulose (HPMC) films intended for tablet coatings. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 74, 371-376.	2.0	10
48	Establishing quantitative in-line analysis of multiple solid-state transformations during dehydration. Journal of Pharmaceutical Sciences, 2008, 97, 4983-4999.	1.6	54
49	Direct compression properties of chitin and chitosan. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69, 964-968.	2.0	30
50	Investigating Dehydration from Compacts Using Terahertz Pulsed, Raman, and Near-Infrared Spectroscopy. Applied Spectroscopy, 2007, 61, 1265-1274.	1.2	33
51	Qualitative in situ analysis of multiple solidâ€state forms using spectroscopy and partial least squares discriminant modeling. Journal of Pharmaceutical Sciences, 2007, 96, 1802-1820.	1.6	51
52	Insight into Thermally Induced Phase Transformations of Erythromycin A Dihydrate. Crystal Growth and Design, 2006, 6, 369-374.	1.4	37
53	Monitoring tablet surface roughness during the film coating process. AAPS PharmSciTech, 2006, 7, E1-E6.	1.5	61
54	Understanding processing-induced phase transformations in erythromycin–PEG 6000 solid dispersions. Journal of Pharmaceutical Sciences, 2006, 95, 1723-1732.	1.6	15

#	Article	IF	CITATIONS
55	Influence of the Aqueous Film Coating Process on the Properties and Stability of Tablets Containing a Moisture‣abile Drug. Pharmaceutical Development and Technology, 2003, 8, 443-451.	1.1	23
56	Tablet film-coating with amylose-rich maize starch. European Journal of Pharmaceutical Sciences, 2002, 17, 23-30.	1.9	41
57	Corn Starches as Film Formers in Aqueous-Based Film Coating. Pharmaceutical Development and Technology, 2001, 6, 353-361.	1.1	61
58	Waxy Corn Starch: A Potent Cofiller in Pellets Produced by Extrusion–Spheronization. Pharmaceutical Development and Technology, 2000, 5, 67-76.	1.1	13