Ghatu Subhash

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5265597/publications.pdf

Version: 2024-02-01

224 papers 8,048 citations

46918 47 h-index 71532 76 g-index

239 all docs 239 docs citations

times ranked

239

5121 citing authors

#	Article	IF	CITATIONS
1	Failure Mechanisms of Ceramics Under Quasi-static and Dynamic Loads: Overview., 2022,, 579-607.		3
2	An extrapolation method to remove spurious stress concentration in micromechanical analyses of composites using pixel-based meshes. Composite Structures, 2022, 290, 115522.	3.1	0
3	Active space garnering by leaves of a rosette plant. Current Biology, 2022, 32, R352-R353.	1.8	1
4	Non-Newtonian Fluid-Like Behavior of Poly(Ethylene Glycol) Diacrylate Hydrogels Under Transient Dynamic Shear. Conference Proceedings of the Society for Experimental Mechanics, 2021, , 17-23.	0.3	0
5	Static and Dynamic Mechanical Characterization of a Spark Plasma Sintered B6O–B4C Composite. Conference Proceedings of the Society for Experimental Mechanics, 2021, , 79-88.	0.3	O
6	Characterization of BAM-B4C composites prepared by spark plasma sintering. Ceramics International, 2021, 47, 11738-11747.	2.3	4
7	Intrinsic hardness of covalent crystals: a unified multiparametric framework. Journal of Materials Science, 2021, 56, 11711-11722.	1.7	2
8	On shockwave propagation and attenuation in poly(ethylene glycol) diacrylate hydrogels. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 118, 104423.	1.5	3
9	Effect of curvature on extensional stiffness matrix of 2-D braided composite tubes. Composites Part A: Applied Science and Manufacturing, 2021, 147, 106422.	3.8	6
10	Measurement of Residual Stress in Silicon Carbide Fibers of Tubular Composites Using Raman Spectroscopy. Acta Materialia, 2021, 217, 117164.	3.8	28
11	Label-free quantification of soft tissue alignment by polarized Raman spectroscopy. Acta Biomaterialia, 2021, 136, 363-374.	4.1	4
12	Validated tensile characterization of the strain rate dependence in soft materials. International Journal of Impact Engineering, 2021, 156, 103949.	2.4	12
13	Shock response of single-crystal boron carbide along orientations with the highest and lowest elastic moduli. Physical Review B, 2021, 104, .	1.1	6
14	Visco-hyperelastic constitutive modeling of strain rate sensitive soft materials. Journal of the Mechanics and Physics of Solids, 2020, 135, 103777.	2.3	53
15	Mechanical properties, spectral vibrational response, and flow-field analysis of the aragonite skeleton of the staghorn coral (Acropora cervicornis). Coral Reefs, 2020, 39, 1779-1792.	0.9	4
16	Intrinsic hardness of boron carbide: Influence of polymorphism and stoichiometry. Journal of the American Ceramic Society, 2020, 103, 7127-7134.	1.9	5
17	Raman Spectroscopy Methods to Characterize the Mechanical Response of Soft Biomaterials. Biomacromolecules, 2020, 21, 3485-3497.	2.6	10
18	Structural and mechanical properties of staghorn coral (<i>Acropora cervicornis</i>) CaCO ₃ aragonite skeletons, cleaned by chemical bleaching and biological processes. Advances in Applied Ceramics, 2020, 119, 434-438.	0.6	2

#	Article	IF	CITATIONS
19	Hyperelastic constitutive modeling of hydrogels based on primary deformation modes and validation under 3D stress states. International Journal of Engineering Science, 2020, 154, 103314.	2.7	30
20	Effect of Loop Defects on the High Strain Rate Behavior of PEGDA Hydrogels: A Molecular Dynamics Study. Journal of Physical Chemistry B, 2020, 124, 2029-2039.	1.2	8
21	Shocked ceramics melt: An atomistic analysis of thermodynamic behavior of boron carbide. Physical Review B, 2020, 101, .	1.1	30
22	Deformation behavior and amorphization in icosahedral boron-rich ceramics. Progress in Materials Science, 2020, 112, 100664.	16.0	34
23	Transient-State Rheological Behavior of Poly(ethylene glycol) Diacrylate Hydrogels at High Shear Strain Rates. Macromolecules, 2019, 52, 5860-5871.	2.2	12
24	Influence of carbon nanotubes as secondary phase addition on the mechanical properties and amorphization of boron carbide. Journal of the European Ceramic Society, 2019, 39, 1974-1983.	2.8	21
25	Influence of porosity and pellet dimensions on temperature and stress inhomogeneities during spark plasma sintering of ceramic fuel. Ceramics International, 2019, 45, 7376-7384.	2.3	6
26	High-pressure deformation and amorphization in boron carbide. Journal of Applied Physics, 2019, 125, .	1.1	39
27	Oxidation of the polycrystalline copper–graphene nanocomposite. JPhys Materials, 2019, 2, 025005.	1.8	5
28	A unified model for dwell and penetration during long rod impact on thick ceramic targets. International Journal of Impact Engineering, 2019, 131, 304-316.	2.4	13
29	Quasi-Static and High Strain Rate Simple Shear Characterization of Soft Polymers. Experimental Mechanics, 2019, 59, 733-747.	1.1	21
30	Effect of water concentration on the shock response of polyethylene glycol diacrylate (PEGDA) hydrogels: A molecular dynamics study. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 90, 30-39.	1.5	17
31	Effect of plasticity on the dynamic capacity of modern bearing steels. Tribology International, 2019, 133, 160-171.	3.0	15
32	Thermodynamics-based stability criteria for constitutive equations of isotropic hyperelastic solids. Journal of the Mechanics and Physics of Solids, 2019, 124, 115-142.	2.3	30
33	Coupled Electro-Thermo-Mechanical Simulation for Multiple Pellet Fabrication Using Spark Plasma Sintering. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2018, 140, .	1.3	9
34	Comparison of pressure-sensitive strength models for ceramics under ultrahigh confinement. International Journal of Impact Engineering, 2018, 118, 60-66.	2.4	24
35	Characterization of adhesive interphase between epoxy and cement paste via Raman spectroscopy and mercury intrusion porosimetry. Cement and Concrete Composites, 2018, 88, 187-199.	4.6	39
36	Nanotwinning and amorphization of boron suboxide. Acta Materialia, 2018, 147, 195-202.	3.8	23

#	Article	IF	Citations
37	Amorphizationâ€induced volume change and residual stresses in boron carbide. Journal of the American Ceramic Society, 2018, 101, 2606-2615.	1.9	28
38	Quasi-static and dynamic response of 3D-printed alumina. Journal of the European Ceramic Society, 2018, 38, 3305-3316.	2.8	24
39	Extended Hertz Theory of Contact Mechanics for Case-Hardened Steels With Implications for Bearing Fatigue Life. Journal of Tribology, 2018, 140, .	1.0	23
40	Challenging endeavor to integrate gallium and carbon via direct bonding to evolve GaN on diamond architecture. Scripta Materialia, 2018, 142, 138-142.	2.6	18
41	Micro-architecture embedding ultra-thin interlayer to bond diamond and silicon via direct fusion. Applied Physics Letters, 2018, 112, 211601.	1.5	0
42	Icosahedral superstrength at the nanoscale. Physical Review Materials, 2018, 2, .	0.9	10
43	Raman spectroscopy mapping of amorphized zones beneath static and dynamic Vickers indentations on boron carbide. Journal of the European Ceramic Society, 2017, 37, 1945-1953.	2.8	25
44	Wave propagation in ballistic gelatine. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 68, 32-41.	1.5	18
45	Controlled single bubble cavitation collapse results in jet-induced injury in brain tissue. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 74, 261-273.	1.5	25
46	Measurement of microscale residual stresses in multi-phase ceramic composites using Raman spectroscopy. Acta Materialia, 2017, 129, 482-491.	3.8	55
47	Exploration of Viability of Spark Plasma Sintering for Commercial Fabrication of Nuclear Fuel Pellets. Nuclear Technology, 2017, 200, 144-158.	0.7	10
48	Evaluating boron-carbide constituents with simulated Raman spectra. Scripta Materialia, 2017, 138, 32-34.	2.6	23
49	An improved dynamic expanding cavity model for high-pressure and high-strain rate response of ceramics. International Journal of Solids and Structures, 2017, 125, 77-88.	1.3	20
50	Simulated blast overpressure induces specific astrocyte injury in an ex vivo brain slice model. PLoS ONE, 2017, 12, e0175396.	1.1	15
51	A New Approach Towards Life Prediction of Case Hardened Bearing Steels Subjected to Rolling Contact Fatigue. Materials Performance and Characterization, 2017, 6, 656-677.	0.2	3
52	Which One Has More Influence on Fracture Strength of Ceramics: Pressure or Strain Rate?. Conference Proceedings of the Society for Experimental Mechanics, 2017, , 195-202.	0.3	0
53	Rateâ€Dependent Mechanical Behavior and Amorphization of Ultrafineâ€Grained Boron Carbide. Journal of the American Ceramic Society, 2016, 99, 3398-3405.	1.9	21
54	An Extended Mohr–Coulomb Model for Fracture Strength of Intact Brittle Materials Under Ultrahigh Pressures. Journal of the American Ceramic Society, 2016, 99, 627-630.	1.9	27

#	Article	IF	Citations
55	Raman spectroscopic investigation of graphitization of diamond during spark plasma sintering of UO2-diamond composite nuclear fuel. Journal of Nuclear Materials, 2016, 475, 1-5.	1.3	34
56	Dynamic deformation characteristics of zirconium diboride–silicon carbide under multi-axial confinement. International Journal of Impact Engineering, 2016, 91, 158-169.	2.4	22
57	In search of amorphization-resistant boron carbide. Scripta Materialia, 2016, 123, 158-162.	2.6	64
58	Crystallographic and spectral equivalence of boron-carbide polymorphs. Scripta Materialia, 2016, 122, 82-85.	2.6	22
59	Microscopic and spectroscopic investigation of phase evolution within static and dynamic indentations in single-crystal silicon. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 673, 321-331.	2.6	9
60	Localized Tissue Surrogate Deformation due to Controlled Single Bubble Cavitation. Experimental Mechanics, 2016, 56, 97-109.	1.1	41
61	Influence of Residual Stress and Temperature on the Cyclic Hardening Response of M50 High-Strength Bearing Steel Subjected to Rolling Contact Fatigue. Journal of Engineering Materials and Technology, Transactions of the ASME, 2016, 138, .	0.8	7
62	Measurement of Residual Stresses in B4C-SiC-Si Ceramics Using Raman Spectroscopy. Conference Proceedings of the Society for Experimental Mechanics, 2016, , 341-345.	0.3	1
63	Cyclic Constitutive Response and Effective S–N Diagram of M50 NiL Case-Hardened Bearing Steel Subjected to Rolling Contact Fatigue. Journal of Tribology, 2015, 137, .	1.0	19
64	Influence of Carbon Nanotube Dispersion in UO ₂ â€"Carbon Nanotube Ceramic Matrix Composites Utilizing Spark Plasma Sintering. Nuclear Technology, 2015, 189, 258-267.	0.7	31
65	Spark plasma sintering of diamond-reinforced uranium dioxide composite fuel pellets. Nuclear Engineering and Design, 2015, 294, 52-59.	0.8	39
66	The Impact Response of Coquina: Unlocking the Mystery Behind the Endurance of the Oldest Fort in the United States. Journal of Dynamic Behavior of Materials, 2015, 1, 397-408.	1.1	2
67	The Rateâ€Dependent Response of Pressurelessâ€Sintered and Reactionâ€bonded Silicon Carbideâ€Based Ceramics. International Journal of Applied Ceramic Technology, 2015, 12, E207.	1.1	15
68	Interaction of Indentationâ€Induced Cracks on Singleâ€Crystal Silicon Carbide. Journal of the American Ceramic Society, 2015, 98, 1891-1897.	1.9	15
69	Raman spectroscopic characterization of the core-rim structure in reaction bonded boron carbide ceramics. Applied Physics Letters, 2015, 106, .	1.5	20
70	The rate-dependent fracture toughness of silicon carbide- and boron carbide-based ceramics. Journal of the European Ceramic Society, 2015, 35, 4411-4422.	2.8	44
71	Ratcheting-based microstructure-sensitive modeling of the cyclic hardening response of case-hardened bearing steels subject to Rolling Contact Fatigue. International Journal of Fatigue, 2015, 73, 119-131.	2.8	35
72	Impact-induced deformation mechanisms in unstrengthened and chemically strengthened glass bars. International Journal of Impact Engineering, 2015, 75, 53-64.	2.4	15

#	Article	lF	CITATIONS
73	Micro-Raman Spectroscopic Evaluation of Residual Microstresses in Reaction Bonded Boron Carbide Ceramics. Conference Proceedings of the Society for Experimental Mechanics, 2015, , 39-43.	0.3	2
74	Determination of Surface Bi-Axial Stresses Using Raman Spectroscopy. Conference Proceedings of the Society for Experimental Mechanics, 2015, , 167-174.	0.3	0
75	Master sintering curves for UO2 and UO2–SiC composite processed by spark plasma sintering. Journal of Nuclear Materials, 2014, 454, 427-433.	1.3	51
76	Extraction and Testing of Miniature Compression Specimens From Bearing Balls Subjected to Rolling Contact Fatigue. Journal of Tribology, 2014, 136, .	1.0	9
77	Ball Impact Response of Unstrengthened and Chemically Strengthened Glass Bars. Journal of the American Ceramic Society, 2014, 97, 189-197.	1.9	16
78	Microstructure-sensitive accumulation of plastic strain due to ratcheting in bearing steels subject to Rolling Contact Fatigue. International Journal of Fatigue, 2014, 63, 191-202.	2.8	69
79	A Novel Technique for the Determination of Surface Biaxial Stress under External Confinement Using Raman Spectroscopy. Experimental Mechanics, 2014, 54, 763-774.	1.1	15
80	Influence of Initial Residual Stress on Material Properties of Bearing Steel During Rolling Contact Fatigue. Tribology Transactions, 2014, 57, 533-545.	1.1	23
81	Influence of processing parameters on thermal conductivity of uranium dioxide pellets prepared by spark plasma sintering. Journal of the European Ceramic Society, 2014, 34, 1791-1801.	2.8	45
82	Analysis of failure modes in three-dimensional woven composites subjected to quasi-static indentation. Journal of Composite Materials, 2014, 48, 2473-2491.	1.2	6
83	Evolution of subsurface plastic zone due to rolling contact fatigue of M-50 NiL case hardened bearing steel. International Journal of Fatigue, 2014, 59, 102-113.	2.8	95
84	Measurement of viscoelastic properties in multiple anatomical regions of acute rat brain tissue slices. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 29, 213-224.	1.5	50
85	Damage Mechanisms of Chemically Strengthened Glass Bars Due to High-Velocity Ball Impact. Conference Proceedings of the Society for Experimental Mechanics, 2014, , 197-200.	0.3	0
86	Damage Mechanisms Perspective on Superior Ballistic Performance of Spinel over Sapphire. Experimental Mechanics, 2013, 53, 31-46.	1.1	30
87	Densification of uranium dioxide fuel pellets prepared by spark plasma sintering (SPS). Journal of Nuclear Materials, 2013, 435, 1-9.	1.3	67
88	Synthesis of Mg–Al2O3 nanocomposites by mechanical alloying. Journal of Alloys and Compounds, 2013, 563, 165-170.	2.8	37
89	Enhanced thermal conductivity of uranium dioxide–silicon carbide composite fuel pellets prepared by Spark Plasma Sintering (SPS). Journal of Nuclear Materials, 2013, 433, 66-73.	1.3	96
90	A Novel Method for Dynamic Short-Beam Shear Testing of 3D Woven Composites. Experimental Mechanics, 2013, 53, 493-503.	1.1	12

#	Article	IF	Citations
91	Recent Progress in Zr(Hf)B2 Based Ultrahigh Temperature Ceramics., 2013,, 267-299.		7
92	Characterization of the 3-D amorphized zone beneath a Vickers indentation in boron carbide using Raman spectroscopy. Acta Materialia, 2013, 61, 3888-3896.	3.8	48
93	Transparent Armor Materials. Experimental Mechanics, 2013, 53, 1-2.	1.1	18
94	The influence of SiC particle size and volume fraction on the thermal conductivity of spark plasma sintered UO2–SiC composites. Journal of Nuclear Materials, 2013, 442, 245-252.	1.3	42
95	Mechanical properties of ZrB ₂ â€"SiC ceramic composites: room temperature instantaneous behaviour. Advances in Applied Ceramics, 2013, 112, 9-16.	0.6	30
96	Experimental and Numerical Modeling of Surface Indentation Response of Plastically Graded Materials. Journal of Engineering Materials and Technology, Transactions of the ASME, 2013, 135, .	0.8	4
97	Microstructure–Property Relationships in M50-NiL and P675 Case-Hardened Bearing Steels. Tribology Transactions, 2013, 56, 1046-1059.	1.1	55
98	Influence of stress state and strain rate on structural amorphization in boron carbide. Journal of Applied Physics, $2012, 111, \ldots$	1.1	55
99	Fabrication Strategies and Thermal Conductivity Assessment of High Density UO2 Pellet Incorporated with SiC. Materials Research Society Symposia Proceedings, 2012, 1444, 9.	0.1	1
100	High-Strain-Rate Brain Injury Model Using Submerged Acute Rat Brain Tissue Slices. Journal of Neurotrauma, 2012, 29, 418-429.	1.7	34
101	Work hardening response of M50-NiL case hardened bearing steel during shakedown in rolling contact fatigue. Materials Science and Technology, 2012, 28, 34-38.	0.8	47
102	Non-Newtonian Behavior of Ballistic Gelatin at High Shear Rates. Experimental Mechanics, 2012, 52, 551-560.	1,1	17
103	Analysis of mode I delamination of z-pinned composites using a non-dimensional analytical model. Composites Part B: Engineering, 2012, 43, 1776-1784.	5.9	23
104	Edge-on-impact response of a coarse-grained magnesium aluminate spinel rod. International Journal of Impact Engineering, 2012, 40-41, 26-34.	2.4	15
105	Synthesis of	•O< scp><	:/sgp>
106	Influence of ultra-high residual compressive stress on the static and dynamic indentation response of a chemically strengthened glass. Journal of the European Ceramic Society, 2012, 32, 1551-1559.	2.8	47
107	An optical technique for determination of rheological properties of gelatin. Journal of Rheology, 2011, 55, 951-964.	1.3	6
108	Photoelastic Measurement of High Stress Profiles in Ionâ€Exchanged Glass. International Journal of Applied Glass Science, 2011, 2, 275-281.	1.0	23

7

#	Article	IF	CITATIONS
109	Rate Sensitive Indentation Response of a Coarseâ€Grained Magnesium Aluminate Spinel. Journal of the American Ceramic Society, 2011, 94, 3960-3966.	1.9	25
110	Loading velocity dependent permeability in agarose gel under compression. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 974-982.	1.5	13
111	Determination of post-yield hardening response in a ZrB2 ceramic. Scripta Materialia, 2011, 65, 962-965.	2.6	8
112	Evolution of Wear Characteristics and Frictional Behavior in MEMS Devices. Tribology Letters, 2011, 41, 177-189.	1.2	34
113	Concentration Dependence of Tensile Behavior in Agarose Gel Using Digital Image Correlation. Experimental Mechanics, 2011, 51, 255-262.	1.1	38
114	A new reverse analysis to determine the constitutive response of plastically graded case hardened bearing steels. International Journal of Solids and Structures, 2011, 48, 584-591.	1.3	34
115	Analysis of interacting cracks due to sequential indentations on sapphire. Acta Materialia, 2011, 59, 3528-3536.	3.8	28
116	Determination of constitutive response of plastically graded materials. International Journal of Plasticity, 2011, 27, 728-738.	4.1	32
117	Static and dynamic indentation response of basal and prism plane sapphire. Journal of the European Ceramic Society, 2011, 31, 1713-1721.	2.8	64
118	Determination of Subsurface Hardness Gradients in Plastically Graded Materials via Surface Indentation. Journal of Tribology, 2011, 133, .	1.0	15
119	Compressive strain rate sensitivity of ballistic gelatin. Journal of Biomechanics, 2010, 43, 420-425.	0.9	95
120	Monotonic and cyclic short beam shear response of 3D woven composites. Composites Science and Technology, 2010, 70, 2190-2197.	3.8	41
121	Slip-line spacing in ZrB2-based ultrahigh-temperature ceramics. Scripta Materialia, 2010, 62, 839-842.	2.6	34
122	Mechanical properties of PECVD thin ceramic films. Journal of the European Ceramic Society, 2010, 30, 689-697.	2.8	21
123	Effect of microscopic deformation mechanisms on the dynamic response of soft cellular materials. Mechanics of Materials, 2010, 42, 118-133.	1.7	16
124	Mechanical properties of 10mol% Sc2O3â€"1mol% CeO2â€"89mol% ZrO2 ceramics. Journal of Power Sources, 2010, 195, 2774-2781.	4.0	31
125	Material-dependent representative plastic strain for the prediction of indentation hardness. Acta Materialia, 2010, 58, 6487-6494.	3.8	34
126	Rateâ€Dependent Indentation Response of Structural Ceramics. Journal of the American Ceramic Society, 2010, 93, 2377-2383.	1.9	20

#	Article	IF	Citations
127	High Shear Rate Behavior of Gelatin., 2010, , .		O
128	Quasistatic and Dynamic Compressive Behavior of Gelatin. , 2010, , .		0
129	A Unified Phenomenological Model for Tensile and Compressive Response of Polymeric Foams. Journal of Engineering Materials and Technology, Transactions of the ASME, 2009, 131, .	0.8	20
130	Room-temperature dislocation activity during mechanical deformation of polycrystalline ultra-high-temperature ceramics. Scripta Materialia, 2009, 61, 1075-1078.	2.6	62
131	Effect of Z-yarns on the stiffness and strength of three-dimensional woven composites. Composites Part B: Engineering, 2009, 40, 540-551.	5.9	41
132	A generalized cohesive element technique for arbitrary crack motion. Finite Elements in Analysis and Design, 2009, 45, 501-510.	1.7	5
133	Quasistatic and dynamic crushability of polymeric foams in rigid confinement. International Journal of Impact Engineering, 2009, 36, 1303-1311.	2.4	12
134	Mechanical properties of BaTiO3 open-porosity foams. Journal of the European Ceramic Society, 2009, 29, 1987-1993.	2.8	17
135	Inelastic deformation under indentation and scratch loads in a ZrB2–SiC composite. Journal of the European Ceramic Society, 2009, 29, 3053-3061.	2.8	33
136	Damage modes in 3D glass fiber epoxy woven composites under high rate of impact loading. Composites Part B: Engineering, 2009, 40, 584-589.	5.9	60
137	Evolution of shear bands in bulk metallic glasses under dynamic loading. Journal of the Mechanics and Physics of Solids, 2008, 56, 2171-2187.	2.3	42
138	Scratch-induced microplasticity and microcracking in zirconium diboride–silicon carbide composite. Acta Materialia, 2008, 56, 3011-3022.	3.8	112
139	On-chip laboratory suite for testing of free-standing metal film mechanical properties, Part II – Experiments. Acta Materialia, 2008, 56, 3313-3326.	3.8	25
140	Measurement of scratch-induced residual stress within SiC grains in ZrB2–SiC composite using micro-Raman spectroscopy. Acta Materialia, 2008, 56, 5345-5354.	3.8	101
141	Grain size dependence of scratch-induced damage in alumina ceramics. Wear, 2008, 265, 612-619.	1.5	49
142	Recent Advances in Dynamic Indentation Fracture, Impact Damage and Fragmentation of Ceramics. Journal of the American Ceramic Society, 2008, 91, 2777-2791.	1.9	88
143	Dynamic Fracture and Strain Rate Behavior of Aggregates Used in Transportation. International Journal of Geomechanics, 2008, 8, 82-90.	1.3	1
144	Optimization of Material Properties and Process Parameters for Tube Hydroforming of Aluminum Extrusions. Journal of Engineering Materials and Technology, Transactions of the ASME, 2007, 129, 233-241.	0.8	7

#	Article	IF	Citations
145	Local heating and viscosity drop during shear band evolution in bulk metallic glasses under quasistatic loading. Journal of Applied Physics, 2007, 102, 043519.	1.1	27
146	Strain-induced formation of carbon and boron clusters in boron carbide during dynamic indentation. Applied Physics Letters, 2007, 91, .	1.5	63
147	Dynamic indentation response of ZrHf-based bulk metallic glasses. Journal of Materials Research, 2007, 22, 478-485.	1.2	18
148	Analysis of Nanoindentation Response of Diatom Frustules. Journal of Nanoscience and Nanotechnology, 2007, 7, 4465-4472.	0.9	6
149	A New Analytical Model for Estimation of Scratch-Induced Damage in Brittle Solids. Journal of the American Ceramic Society, 2007, 90, 885-892.	1.9	137
150	Dynamic Indentation Response of Fine-Grained Boron Carbide. Journal of the American Ceramic Society, 2007, 90, 1850-1857.	1.9	108
151	Ductile to Brittle Transition Depth During Singleâ€Grit Scratching on Alumina Ceramics. Journal of the American Ceramic Society, 2007, 90, 3704-3707.	1.9	32
152	Shear Band Patterns in Metallic Glasses under Static Indentation, Dynamic Indentation, and Scratch Processes. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 2936-2942.	1.1	19
153	Sensitivity of Scratch Resistance to Grinding-Induced Damage Anisotropy in Silicon Nitride. Journal of the American Ceramic Society, 2006, 89, 2528-2536.	1.9	21
154	Two new expanding cavity models for indentation deformations of elastic strain-hardening materials. International Journal of Solids and Structures, 2006, 43, 2193-2208.	1.3	143
155	Micromechanical modeling of tungsten-based bulk metallic glass matrix composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 429, 115-123.	2.6	28
156	Effects of cell shape and strut cross-sectional area variations on the elastic properties of three-dimensional open-cell foams. Journal of the Mechanics and Physics of Solids, 2006, 54, 783-806.	2.3	135
157	Characterization of viscoelastic properties of polymer bar using iterative deconvolution in the time domain. Mechanics of Materials, 2006, 38, 1105-1117.	1.7	46
158	Quasistatic and high strain rate uniaxial compressive response of polymeric structural foams. International Journal of Impact Engineering, 2006, 32, 1113-1126.	2.4	91
159	Evaluation of hardness–yield strength relationships for bulk metallic glasses. Philosophical Magazine Letters, 2006, 86, 333-345.	0.5	50
160	The Influence of Pre-forming on Hydroforming of Extruded Aluminum Tubes. International Journal of Forming Processes, 2006, 9, 97-119.	0.3	1
161	Investigation of Mechanical Properties of Diatom Frustules Using Nanoindentation. Journal of Nanoscience and Nanotechnology, 2005, 5, 50-56.	0.9	42
162	Proportional loading of thick-walled cylinders. International Journal of Pressure Vessels and Piping, 2005, 82, 129-135.	1.2	14

#	Article	IF	Citations
163	Mechanical behavior of tungsten preform reinforced bulk metallic glass composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 403, 134-143.	2.6	48
164	Anisotropic grain growth with pore drag under applied loads. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 412, 271-278.	2.6	8
165	Investigation of shear band evolution in amorphous alloys beneath a Vickers indentation. Acta Materialia, 2005, 53, 3849-3859.	3.8	104
166	Effects of cell shape and cell wall thickness variations on the elastic properties of two-dimensional cellular solids. International Journal of Solids and Structures, 2005, 42, 1777-1795.	1.3	160
167	A New Scratch Resistance Measure for Structural Ceramics. Journal of the American Ceramic Society, 2005, 88, 918-925.	1.9	37
168	Loading path optimization of tube hydroforming process. International Journal of Machine Tools and Manufacture, 2005, 45, 1504-1514.	6.2	88
169	A Parametric Study on Crushability of Open-Cell Structural Polymeric Foams. Journal of Porous Materials, 2005, 12, 233-248.	1.3	35
170	Behavior of a Novel Iterative Deconvolution Algorithm for System Identification. JVC/Journal of Vibration and Control, 2005, 11, 985-1003.	1.5	4
171	Indentation of Strain-Hardening Materials: A New Expanding Cavity Model. , 2005, , .		0
172	Mechanical properties and microstructural characterization of extrusion welds in AA6082-T4. Journal of Materials Science, 2004, 39, 6561-6569.	1.7	35
173	Crushability maps for structural polymeric foams in uniaxial loading under rigid confinement. Experimental Mechanics, 2004, 44, 289-294.	1.1	15
174	A phenomenological constitutive model for foams under large deformations. Polymer Engineering and Science, 2004, 44, 463-473.	1.5	106
175	Influence of end-conditions during tube hydroforming of aluminum extrusions. International Journal of Mechanical Sciences, 2004, 46, 1195-1212.	3.6	38
176	Experimental and numerical investigation of free-bulge formation during hydroforming of aluminum extrusions. Journal of Materials Processing Technology, 2004, 147, 247-254.	3.1	31
177	Damage zone interaction due to non-oriented Vickers indentations on brittle materials. Journal of Materials Science, 2003, 38, 1185-1194.	1.7	3
178	Mechanical behavior of bulk (ZrHf)TiCuNiAl amorphous alloys. Scripta Materialia, 2003, 49, 447-452.	2.6	14
179	Negative strain rate sensitivity and compositional dependence of fracture strength in Zr/Hf based bulk metallic glasses. Scripta Materialia, 2003, 49, 1087-1092.	2.6	89
180	A nonlocal formulation based on a novel averaging scheme applicable to nanostructured materials. Mechanics of Materials, 2003, 35, 281-294.	1.7	5

#	Article	IF	Citations
181	Influence of lateral confinement on dynamic damage evolution during uniaxial compressive response of brittle solids. Journal of the Mechanics and Physics of Solids, 2003, 51, 1089-1105.	2.3	88
182	Finite Element Analysis of Brittle Cracking due to Single Grit Rotating Scratch. Journal of Applied Mechanics, Transactions ASME, 2003, 70, 147-151.	1.1	13
183	Characterization of uniaxial compressive response of bulk amorphous Zr–Ti–Cu–Ni–Be alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 334, 33-40.	2.6	127
184	Application of data dependent systems approach for evaluation of fracture modes during a single-grit scratching. Mechanics of Materials, 2002, 34, 25-42.	1.7	36
185	A dynamic damage growth model for uniaxial compressive response of rock aggregates. Mechanics of Materials, 2002, 34, 267-277.	1.7	71
186	Investigation of the overall friction coefficient in single-pass scratch test. Wear, 2002, 252, 123-134.	1.5	121
187	An approximate upper bound approach for the single-grit rotating scratch with a conical tool on pure metal. Wear, 2002, 252, 911-933.	1.5	14
188	Mechanics of mixed-mode ductile material removal with a conical tool and the size dependence of the specific energy. Journal of the Mechanics and Physics of Solids, 2002, 50, 1269-1296.	2.3	15
189	Influence of strain-rate on the uniaxial compressive behavior of 2-D braided textile composites. Composites Part A: Applied Science and Manufacturing, 2001, 32, 1583-1591.	3.8	11
190	A plasticity-based model of material removal in chemical-mechanical polishing (CMP). IEEE Transactions on Semiconductor Manufacturing, 2001, 14, 406-417.	1.4	129
191	Finite element analysis of interacting Vickers indentations on brittle materials. Acta Materialia, 2001, 49, 2961-2974.	3.8	33
192	An elastic–plastic-cracking model for finite element analysis of indentation cracking in brittle materials. International Journal of Solids and Structures, 2001, 38, 5893-5913.	1.3	86
193	Characteristics of single-grit rotating scratch with a conical tool on pure titanium. Wear, 2001, 249, 566-581.	1.5	50
194	Dynamic Vickers indentation of brittle materials. Wear, 2000, 239, 27-35.	1.5	102
195	Micromechanisms of deformation in high-purity hot-pressed alumina. Materials Science & Description of the Company of the Compa	2.6	46
196	Role of Unloading in Machining of Brittle Materials. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2000, 122, 452-462.	1.3	18
197	Short note Dynamic compression behaviour of tungsten powders consolidated by plasma pressure compaction. Powder Metallurgy, 1999, 42, 181-182.	0.9	17
198	Dynamic Indentation Hardness and Rate Sensitivity in Metals. Journal of Engineering Materials and Technology, Transactions of the ASME, 1999, 121, 257-263.	0.8	58

#	Article	lF	Citations
199	Characteristics of residual plastic zone under static and dynamic Vickers indentations. Wear, 1999, 224, 56-67.	1.5	52
200	Constitutive modeling of textured body-centered-cubic (bcc) polycrystals. International Journal of Plasticity, 1999, 15, 625-645.	4.1	26
201	Fatigue crack propagation in aluminum nitride ceramics under cyclic compression. Journal of Materials Science, 1999, 34, 4645-4652.	1.7	1
202	Determination of resudual stress fields beneath a Vickers indentation using photoelasticity. Experimental Mechanics, 1999, 39, 227-230.	1.1	8
203	Influence of cold rolling and strain rate on plastic response of powder metallurgy and chemical vapor deposition rhenium. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1999, 30, 2641-2648.	1.1	7
204	Consolidation and high strain rate mechanical behavior of nanocrystalline tantalum powder. Scripta Materialia, 1999, 12, 23-28.	0.5	51
205	Dynamic Indentation Hardness of Metals. , 1999, , 447-456.		2
206	Mechanical behaviour of a hot pressed aluminum nitride under uniaxial compression. Journal of Materials Science, 1998, 33, 1933-1939.	1.7	76
207	The role of plasticity as a limiting factor in the compressive failure of high strength ceramics. Mechanics of Materials, 1998, 29, 205-218.	1.7	132
208	Defect evolution during machining of brittle materials. Studies in Applied Mechanics, 1997, , 89-98.	0.4	0
209	AN EXPERIMENTAL TECHNIQUE TO INVESTIGATE THE DYNAMIC INDENTATION HARDNESS OF MATERIALS. Experimental Techniques, 1997, 21, 16-18.	0.9	20
210	Plastic deformation of hafnium under uniaxial compression. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1997, 28, 1479-1487.	1.1	29
211	A micromechanical model for high strain rate behavior of ceramics. International Journal of Solids and Structures, 1995, 32, 2627-2646.	1.3	214
212	The constitutive behavior of refractory metals as a function of strain rate. Jom, 1995, 47, 55-58.	0.9	22
213	Strain-rate effects in high-purity alumina. Jom, 1995, 47, 60-63.	0.9	11
214	Evolution of microstructure and shear-band formation in \hat{l}_{\pm} -hcp titanium. Mechanics of Materials, 1994, 17, 175-193.	1.7	249
215	Critical Appraisal of Limiting Strain Rates for Compression Testing of Ceramics in a Split Hopkinson Pressure Bar. Journal of the American Ceramic Society, 1994, 77, 263-267.	1.9	409
216	Plastic deformation of CVD textured tungstenâ€"I. Constitutive response. Acta Metallurgica Et Materialia, 1994, 42, 319-330.	1.9	32

#	Article	IF	CITATIONS
217	Plastic deformation of CVD textured tungsten—II. Characterization. Acta Metallurgica Et Materialia, 1994, 42, 331-340.	1.9	20
218	Uniaxial stress behaviour of Y-TZP. Journal of Materials Science, 1993, 28, 5949-5952.	1.7	15
219	Dynamic Stress-Induced Transformation and Texture Formation in Uniaxial Compression of Zirconia Ceramics. Journal of the American Ceramic Society, 1993, 76, 153-165.	1.9	67
220	Experimental investigation of fabric-stress relations in granular materials. Mechanics of Materials, 1991, 11, 87-106.	1.7	58
221	Static and Dynamic Indentation Response of Fine Grained Boron Carbide. , 0, , 29-44.		2
222	Scratch Resistance and Residual Stresses in Longitudinally and Transversely Ground Silicon Nitride. , 0, , 285-292.		4
223	Scratch-Induced Deformation and Residual Stress in a Zirconium Diboride-Silicon Carbide Composite. Ceramic Engineering and Science Proceedings, 0, , 51-63.	0.1	0
224	A Novel Rotating Flexure-Test Technique for Brittle Materials with Circular Geometries. Experimental Techniques, 0, , 1.	0.9	1