
Trang T Ly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5265134/publications.pdf Version: 2024-02-01

#	ARTICLE	IF	CITATIONS
1	Effect of Sensor-Augmented Insulin Pump Therapy and Automated Insulin Suspension vs Standard Insulin Pump Therapy on Hypoglycemia in Patients With Type 1 Diabetes. JAMA - Journal of the American Medical Association, 2013, 310, 1240.	3.8	367
2	Home use of a bihormonal bionic pancreas versus insulin pump therapy in adults with type 1 diabetes: a multicentre randomised crossover trial. Lancet, The, 2017, 389, 369-380.	6.3	207
3	Multicenter Trial of a Tubeless, On-Body Automated Insulin Delivery System With Customizable Glycemic Targets in Pediatric and Adult Participants With Type 1 Diabetes. Diabetes Care, 2021, 44, 1630-1640.	4.3	133
4	Assessment and management of hypoglycemia in children and adolescents with diabetes. Pediatric Diabetes, 2014, 15, 180-192.	1.2	129
5	Feasibility of Long-Term Closed-Loop Control: A Multicenter 6-Month Trial of 24/7 Automated Insulin Delivery. Diabetes Technology and Therapeutics, 2017, 19, 18-24.	2.4	120
6	Day and Night Closed-Loop Control Using the Integrated Medtronic Hybrid Closed-Loop System in Type 1 Diabetes at Diabetes Camp. Diabetes Care, 2015, 38, 1205-1211.	4.3	111
7	Overnight Glucose Control With an Automated, Unified Safety System in Children and Adolescents With Type 1 Diabetes at Diabetes Camp. Diabetes Care, 2014, 37, 2310-2316.	4.3	109
8	Multinational Home Use of Closed-Loop Control Is Safe and Effective. Diabetes Care, 2016, 39, 1143-1150.	4.3	95
9	Closed-Loop Control Without Meal Announcement in Type 1 Diabetes. Diabetes Technology and Therapeutics, 2017, 19, 527-532.	2.4	87
10	Expectations and Attitudes of Individuals With Type 1 Diabetes After Using a Hybrid Closed Loop System. The Diabetes Educator, 2017, 43, 223-232.	2.6	78
11	Effect of Acetaminophen on CGM Glucose in an Outpatient Setting. Diabetes Care, 2015, 38, e158-e159.	4.3	73
12	Improving Epinephrine Responses in Hypoglycemia Unawareness With Real-Time Continuous Glucose Monitoring in Adolescents With Type 1 Diabetes. Diabetes Care, 2011, 34, 50-52.	4.3	72
13	Impaired Awareness of Hypoglycemia in a Population-Based Sample of Children and Adolescents With Type 1 Diabetes. Diabetes Care, 2009, 32, 1802-1806.	4.3	70
14	Fully Closed-Loop Multiple Model Probabilistic Predictive Controller Artificial Pancreas Performance in Adolescents and Adults in a Supervised Hotel Setting. Diabetes Technology and Therapeutics, 2018, 20, 335-343.	2.4	64
15	Safety and Feasibility of the OmniPod Hybrid Closed-Loop System in Adult, Adolescent, and Pediatric Patients with Type 1 Diabetes Using a Personalized Model Predictive Control Algorithm. Diabetes Technology and Therapeutics, 2018, 20, 257-262.	2.4	62
16	Safety and Performance of the Omnipod Hybrid Closed-Loop System in Adults, Adolescents, and Children with Type 1 Diabetes Over 5 Days Under Free-Living Conditions. Diabetes Technology and Therapeutics, 2020, 22, 174-184.	2.4	61
17	Outpatient Closed-Loop Control with Unannounced Moderate Exercise in Adolescents Using Zone Model Predictive Control. Diabetes Technology and Therapeutics, 2017, 19, 331-339.	2.4	56
18	Neurocognitive Outcomes in Young Adults With Early-Onset Type 1 Diabetes. Diabetes Care, 2011, 34, 2192-2197.	4.3	53

TRANG T LY

#	Article	IF	CITATIONS
19	First Outpatient Evaluation of a Tubeless Automated Insulin Delivery System with Customizable Glucose Targets in Children and Adults with Type 1 Diabetes. Diabetes Technology and Therapeutics, 2021, 23, 410-424.	2.4	52
20	Analysis of Glucose Responses to Automated Insulin Suspension With Sensor-Augmented Pump Therapy. Diabetes Care, 2012, 35, 1462-1465.	4.3	47
21	Automated hybrid closed-loop control with a proportional-integral-derivative based system in adolescents and adults with type 1 diabetes: individualizing settings for optimal performance. Pediatric Diabetes, 2017, 18, 348-355.	1.2	46
22	Evaluation of a Predictive Low-Glucose Management System In-Clinic. Diabetes Technology and Therapeutics, 2017, 19, 288-292.	2.4	46
23	Application of Zone Model Predictive Control Artificial Pancreas During Extended Use of Infusion Set and Sensor: A Randomized Crossover-Controlled Home-Use Trial. Diabetes Care, 2017, 40, 1096-1102.	4.3	46
24	Automated Overnight Closed-Loop Control Using a Proportional-Integral-Derivative Algorithm with Insulin Feedback in Children and Adolescents with Type 1 Diabetes at Diabetes Camp. Diabetes Technology and Therapeutics, 2016, 18, 377-384.	2.4	44
25	Hybrid Closed-Loop Control Is Safe and Effective for People with Type 1 Diabetes Who Are at Moderate to High Risk for Hypoglycemia. Diabetes Technology and Therapeutics, 2019, 21, 356-363.	2.4	44
26	Performance of the Omnipod Personalized Model Predictive Control Algorithm with Meal Bolus Challenges in Adults with Type 1 Diabetes. Diabetes Technology and Therapeutics, 2018, 20, 585-595.	2.4	39
27	Early Detection of Infusion Set Failure During Insulin Pump Therapy in Type 1 Diabetes. Journal of Diabetes Science and Technology, 2016, 10, 1268-1276.	1.3	37
28	Day-and-Night Closed-Loop Control Using the Unified Safety System in Adolescents With Type 1 Diabetes at Camp. Diabetes Care, 2016, 39, e106-e107.	4.3	35
29	A Cost-Effectiveness Analysis of Sensor-Augmented Insulin Pump Therapy and Automated Insulin Suspension versus Standard Pump Therapy for Hypoglycemic Unaware Patients with Type 1 Diabetes. Value in Health, 2014, 17, 561-569.	0.1	34
30	Effectiveness of a Predictive Algorithm in the Prevention of Exercise-Induced Hypoglycemia in Type 1 Diabetes. Diabetes Technology and Therapeutics, 2016, 18, 543-550.	2.4	34
31	Novel Bluetooth-Enabled Tubeless Insulin Pump: Innovating Pump Therapy for Patients in the Digital Age. Journal of Diabetes Science and Technology, 2019, 13, 20-26.	1.3	34
32	Performance of Omnipod Personalized Model Predictive Control Algorithm with Moderate Intensity Exercise in Adults with Type 1 Diabetes. Diabetes Technology and Therapeutics, 2019, 21, 265-272.	2.4	33
33	Prevention of Insulin-Induced Hypoglycemia in Type 1 Diabetes with Predictive Low Glucose Management System. Diabetes Technology and Therapeutics, 2016, 18, 436-443.	2.4	29
34	Psychosocial and Human Factors During a Trial of a Hybrid Closed Loop System for Type 1 Diabetes Management. Diabetes Technology and Therapeutics, 2018, 20, 648-653.	2.4	29
35	Human regular Uâ€500 insulin via continuous subcutaneous insulin infusion versus multiple daily injections in adults with type 2 diabetes: The VIVID study. Diabetes, Obesity and Metabolism, 2020, 22, 434-441.	2.2	28
36	Safety and Glycemic Outcomes With a Tubeless Automated Insulin Delivery System in Very Young Children With Type 1 Diabetes: A Single-Arm Multicenter Clinical Trial. Diabetes Care, 2022, 45, 1907-1910.	4.3	28

TRANG T LY

#	Article	IF	CITATIONS
37	The Impact of Accelerometer Use in Exercise-Associated Hypoglycemia Prevention in Type 1 Diabetes. Journal of Diabetes Science and Technology, 2015, 9, 80-85.	1.3	27
38	Duration of Infusion Set Survival in Lipohypertrophy Versus Nonlipohypertrophied Tissue in Patients with Type 1 Diabetes. Diabetes Technology and Therapeutics, 2016, 18, 429-435.	2.4	27
39	Stabilization of glycemic control and improved quality of life using a shared medical appointment model in adolescents with type 1 diabetes in suboptimal control. Pediatric Diabetes, 2017, 18, 204-212.	1.2	26
40	Continuous Glucose Monitoring Enables the Detection of Losses in Infusion Set Actuation (LISAs). Sensors, 2017, 17, 161.	2.1	21
41	Real-Time Detection of Infusion Site Failures in a Closed-Loop Artificial Pancreas. Journal of Diabetes Science and Technology, 2018, 12, 599-607.	1.3	21
42	Predictive Hyperglycemia and Hypoglycemia Minimization: In-Home Evaluation of Safety, Feasibility, and Efficacy in Overnight Glucose Control in Type 1 Diabetes. Diabetes Care, 2017, 40, 359-366.	4.3	20
43	Predictive hyperglycemia and hypoglycemia minimization: Inâ€home doubleâ€blind randomized controlled evaluation in children and young adolescents. Pediatric Diabetes, 2018, 19, 420-428.	1.2	19
44	Effect of Lipohypertrophy on Accuracy of Continuous Glucose Monitoring in Patients With Type 1 Diabetes. Diabetes Care, 2015, 38, e166-e167.	4.3	17
45	Hypoglycemia Does Not Change the Threshold for Arousal from Sleep in Adolescents with Type 1 Diabetes. Diabetes Technology and Therapeutics, 2012, 14, 101-104.	2.4	16
46	Continuous Glucose Monitoring Adherence. Journal of Diabetes Science and Technology, 2016, 10, 627-632.	1.3	16
47	How introduction of automated insulin delivery systems may influence psychosocial outcomes in adults with type 1 diabetes: Findings from the first investigation with the Omnipod® 5 System. Diabetes Research and Clinical Practice, 2022, 190, 109998.	1.1	15
48	The Importance of the Hawthorne Effect on Psychological Outcomes Unveiled in a Randomized Controlled Trial of Diabetes Technology. Journal of Diabetes Science and Technology, 2018, 12, 735-736.	1.3	14
49	In-home nighttime predictive low glucose suspend experience in children and adults with type 1 diabetes. Pediatric Diabetes, 2017, 18, 332-339.	1.2	12
50	Accuracy Evaluation of Blood Glucose Monitoring Systems in Children on Overnight Closed-Loop Control. Journal of Diabetes Science and Technology, 2014, 8, 969-973.	1.3	10
51	Ketone production in children with type 1 diabetes, ages 4-14 years, with and without nocturnal insulin pump suspension. Pediatric Diabetes, 2017, 18, 422-427.	1.2	10
52	Clinical Implementation of the Omnipod 5 Automated Insulin Delivery System: Key Considerations for Training and Onboarding People With Diabetes. Clinical Diabetes, 2022, 40, 168-184.	1.2	10
53	Improved glycemic control in 3,592 adults with type 2 diabetes mellitus initiating a tubeless insulin management system. Diabetes Research and Clinical Practice, 2021, 174, 108735.	1.1	9
54	Continuous Glucose Sensor Survival and Accuracy Over 14 Consecutive Days. Diabetes Care, 2016, 39, e112-e113.	4.3	8

TRANG T LY

#	Article	IF	CITATIONS
55	Feasibility Studies of an Insulin-Only Bionic Pancreas in a Home-Use Setting. Journal of Diabetes Science and Technology, 2019, 13, 1001-1007.	1.3	8
56	Improved Glycemic Control Following Transition to Tubeless Insulin Pump Therapy in Adults With Type 1 Diabetes. Clinical Diabetes, 2021, 39, 72-79.	1.2	8
57	Technology and Type 1 Diabetes: Closed-Loop Therapies. Current Pediatrics Reports, 2015, 3, 170-176.	1.7	4
58	Glycemic Control and Factors Impacting Treatment Choice in Tubeless Insulin Pump Users: A Survey of the T1D Exchange Glu Online Community. Journal of Diabetes Science and Technology, 2019, 13, 1180-1181.	1.3	4
59	Patientâ€reported outcomes in a study of human regular Uâ€500 insulin delivered by continuous subcutaneous insulin infusion or multiple daily injections in patients with type 2 diabetes. Diabetes, Obesity and Metabolism, 2021, 23, 240-244.	2.2	4
60	Clinical Evaluation of a Novel CGM-Informed Bolus Calculator with Automatic Glucose Trend Adjustment. Diabetes Technology and Therapeutics, 2022, 24, 18-25.	2.4	2
61	Closed-loop control in type 1 diabetes. Lancet Diabetes and Endocrinology,the, 2016, 4, 191-193.	5.5	1
62	Simulation-Based Evaluation of Dose Titration Algorithms for U-500R Insulin by Pump in Subjects with	1.3	0

Type 2 Diabetes. Journal of Diabetes Science and Technology, 2021, 15, 1195-1197. 62