Li Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/526505/publications.pdf

Version: 2024-02-01

623734 454955 1,541 34 14 30 citations h-index g-index papers 48 48 48 2769 docs citations citing authors all docs times ranked

#	Article	lF	Citations
1	Mako: A Graph-based Pattern Growth Approach to Detect Complex Structural Variants. Genomics, Proteomics and Bioinformatics, 2022, 20, 205-218.	6.9	6
2	A global survey of the transcriptome of the opium poppy (<i>Papaver somniferum</i>) based on singleâ€molecule longâ€read isoform sequencing. Plant Journal, 2022, 110, 607-620.	5.7	5
3	Genomic insights into longan evolution from a chromosome-level genome assembly and population genomics of longan accessions. Horticulture Research, 2022, 9, .	6.3	14
4	A Chromosome-Level Reference Genome of Chinese Balloon Flower (Platycodon grandiflorus). Frontiers in Genetics, 2022, 13, 869784.	2.3	7
5	Application of Metagenomic Next-Generation Sequencing in the Diagnosis of Pulmonary Infectious Pathogens From Bronchoalveolar Lavage Samples. Frontiers in Cellular and Infection Microbiology, 2021, 11, 541092.	3.9	72
6	Metatranscriptomic Comparison of Endophytic and Pathogenic <i>Fusarium</i> àê"Arabidopsis Interactions Reveals Plant Transcriptional Plasticity. Molecular Plant-Microbe Interactions, 2021, 34, 1071-1083.	2.6	25
7	Malectin/Malectin-like domain-containing proteins: A repertoire of cell surface molecules with broad functional potential. Cell Surface, 2021, 7, 100056.	3.0	23
8	Three chromosome-scale Papaver genomes reveal punctuated patchwork evolution of the morphinan and noscapine biosynthesis pathway. Nature Communications, 2021, 12, 6030.	12.8	51
9	Cerebrospinal Fluid from Healthy Pregnant Women Does Not Harbor a Detectable Microbial Community. Microbiology Spectrum, 2021, 9, e0076921.	3.0	5
10	Chromosome-Scale Genome Assembly of <i>Talaromyces rugulosus</i> W13939, a Mycoparasitic Fungus and Promising Biocontrol Agent. Molecular Plant-Microbe Interactions, 2020, 33, 1446-1450.	2.6	4
11	A Chromosome-Scale Genome Assembly for the <i>Fusarium oxysporum</i> Strain Fo5176 To Establish a Model <i>Arabidopsis</i> Fungal Pathosystem. G3: Genes, Genomes, Genetics, 2020, 10, 3549-3555.	1.8	28
12	Transportation, germs, culture: a dynamic graph model of COVIDâ€19 outbreak. Quantitative Biology, 2020, 8, 238-244.	0.5	4
13	MSIsensor-pro: Fast, Accurate, and Matched-normal-sample-free Detection of Microsatellite Instability. Genomics, Proteomics and Bioinformatics, 2020, 18, 65-71.	6.9	53
14	Chromosome-Scale Genome Assembly of <i>Fusarium oxysporum</i> Strain Fo47, a Fungal Endophyte and Biocontrol Agent. Molecular Plant-Microbe Interactions, 2020, 33, 1108-1111.	2.6	29
15	Dynamic network inference and association computation discover gene modules regulating virulence, mycotoxin and sexual reproduction in Fusarium graminearum. BMC Genomics, 2020, 21, 179.	2.8	8
16	The genome of opportunistic fungal pathogen Fusarium oxysporum carries a unique set of lineage-specific chromosomes. Communications Biology, 2020, 3, 50.	4.4	55
17	Predicting Virulence of Fusarium oxysporum f. sp. Cubense Based on the Production of Mycotoxin Using a Linear Regression Model. Toxins, 2020, 12, 254.	3.4	10
18	Mapping Genome Variants Sheds Light on Genetic and Phenotypic Differentiation in Chinese. Genomics, Proteomics and Bioinformatics, 2019, 17, 226-228.	6.9	1

#	Article	IF	Citations
19	Multi-platform discovery of haplotype-resolved structural variation in human genomes. Nature Communications, 2019, 10, 1784.	12.8	636
20	Genome-wide analysis of Fusarium verticillioides reveals inter-kingdom contribution of horizontal gene transfer to the expansion of metabolism. Fungal Genetics and Biology, 2019, 128, 60-73.	2.1	8
21	Identifying TF Binding Motifs from Partial Set of Target Genes and its Application to Regulatory Network Inference. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 17, 1-1.	3.0	0
22	Kinome Expansion in the Fusarium oxysporum Species Complex Driven by Accessory Chromosomes. MSphere, 2018, 3 , .	2.9	29
23	A Computational Protocol to Analyze Metatranscriptomic Data Capturing Fungal–Host Interactions. Methods in Molecular Biology, 2018, 1848, 207-233.	0.9	1
24	The opium poppy genome and morphinan production. Science, 2018, 362, 343-347.	12.6	225
25	Split-Read Indel and Structural Variant Calling Using PINDEL. Methods in Molecular Biology, 2018, 1833, 95-105.	0.9	20
26	A De Novo-Assembly Based Data Analysis Pipeline for Plant Obligate Parasite Metatranscriptomic Studies. Frontiers in Plant Science, 2016, 7, 925.	3.6	10
27	Conservation and divergence of the cyclic adenosine monophosphate–protein kinase A (cAMP– <scp>PKA</scp>) pathway in two plantâ€pathogenic fungi: <i>Fusarium graminearum</i> and <i><scp>F</scp>. verticillioides</i> Molecular Plant Pathology, 2016, 17, 196-209.	4.2	23
28	Compartmentalized gene regulatory network of the pathogenic fungus <i>Fusarium graminearum</i> New Phytologist, 2016, 211, 527-541.	7.3	48
29	Basil Downy Mildew (<i>Peronospora belbahrii</i>): Discoveries and Challenges Relative to Its Control. Phytopathology, 2015, 105, 885-894.	2.2	64
30	FvSO regulates vegetative hyphal fusion, asexual growth, fumonisin B1 production, and virulence in Fusarium verticillioides. Fungal Biology, 2015, 119, 1158-1169.	2.5	20
31	Mating type and spore killing characterization of Fusarium verticillioides strains. Mycological Progress, $2015, 14, 1$.	1.4	2
32	Fusarium graminearum Genomics and Beyond. , 2014, , 103-122.		4
33	Inferring regulatory networks through orthologous gene mapping. , 2013, , .		1
34	Transportation, Germs, Culture: A Dynamic Graph Model of COVID-19 Outbreak. SSRN Electronic Journal, 0, , .	0.4	0