
Manoj S Nair

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5264774/publications.pdf Version: 2024-02-01

MANOLS NAID

#	Article	IF	CITATIONS
1	Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature, 2021, 593, 130-135.	13.7	1,904
2	Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike. Nature, 2020, 584, 450-456.	13.7	1,337
3	Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature, 2022, 602, 676-681.	13.7	1,038
4	Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4 and BA.5. Nature, 2022, 608, 603-608.	13.7	541
5	Increased resistance of SARS-CoV-2 variant P.1 to antibody neutralization. Cell Host and Microbe, 2021, 29, 747-751.e4.	5.1	504
6	Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite. Cell Host and Microbe, 2021, 29, 819-833.e7.	5.1	444
7	Nanobodies from camelid mice and llamas neutralize SARS-CoV-2 variants. Nature, 2021, 595, 278-282.	13.7	154
8	Defining the risk of SARS-CoV-2 variants on immune protection. Nature, 2022, 605, 640-652.	13.7	117
9	SARS-CoV-2 neutralizing antibody responses are more robust in patients with severe disease. Emerging Microbes and Infections, 2020, 9, 2091-2093.	3.0	109
10	Emergence and expansion of SARS-CoV-2 B.1.526 after identification in New York. Nature, 2021, 597, 703-708.	13.7	103
11	Artemisia annua L. extracts inhibit the in vitro replication of SARS-CoV-2 and two of its variants. Journal of Ethnopharmacology, 2021, 274, 114016.	2.0	80
12	A SARS-CoV-2 ferritin nanoparticle vaccine elicits protective immune responses in nonhuman primates. Science Translational Medicine, 2022, 14, .	5.8	73
13	Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature, 0, , .	13.7	72
14	Lead compounds for the development of SARS-CoV-2 3CL protease inhibitors. Nature Communications, 2021, 12, 2016.	5.8	65
15	Neutralizing antibody 5-7 defines a distinct site of vulnerability in SARS-CoV-2 spike N-terminal domain. Cell Reports, 2021, 37, 109928.	2.9	52
16	Development of optimized drug-like small molecule inhibitors of the SARS-CoV-2 3CL protease for treatment of COVID-19. Nature Communications, 2022, 13, 1891.	5.8	45
17	Efficacy and breadth of adjuvanted SARS-CoV-2 receptor-binding domain nanoparticle vaccine in macaques. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	44
18	Paired heavy- and light-chain signatures contribute to potent SARS-CoV-2 neutralization in public antibody responses. Cell Reports, 2021, 37, 109771.	2.9	38

MANOJ S NAIR

#	Article	IF	CITATIONS
19	An airway organoid-based screen identifies a role for the HIF1α-glycolysis axis in SARS-CoV-2 infection. Cell Reports, 2021, 37, 109920.	2.9	36
20	An antibody class with a common CDRH3 motif broadly neutralizes sarbecoviruses. Science Translational Medicine, 2022, 14, eabn6859.	5.8	31
21	All Domains of Cry1A Toxins Insert into Insect Brush Border Membranes. Journal of Biological Chemistry, 2008, 283, 26324-26331.	1.6	30
22	Inhibitors of Coronavirus 3CL Proteases Protect Cells from Protease-Mediated Cytotoxicity. Journal of Virology, 2021, 95, e0237420.	1.5	27
23	A monoclonal antibody that neutralizes SARS-CoV-2 variants, SARS-CoV, and other sarbecoviruses. Emerging Microbes and Infections, 2022, 11, 147-157.	3.0	25
24	Cry Protein Crystals: A Novel Platform for Protein Delivery. PLoS ONE, 2015, 10, e0127669.	1.1	20
25	Artemisia annua L. hot-water extracts show potent activity in vitro against Covid-19 variants including delta. Journal of Ethnopharmacology, 2022, 284, 114797.	2.0	20
26	Functional differences among the spike glycoproteins of multiple emerging severe acute respiratory syndrome coronavirus 2 variants of concern. IScience, 2021, 24, 103393.	1.9	17
27	Membrane Insertion of the <i>Bacillus thuringiensis</i> Cry1Ab Toxin: Single Mutation in Domain II Block Partitioning of the Toxin into the Brush Border Membrane. Biochemistry, 2008, 47, 5814-5822.	1.2	12
28	Mutagenic analysis of putative domain II and surface residues in mosquitocidalBacillus thuringiensisCry19Aa toxin. FEMS Microbiology Letters, 2009, 295, 156-163.	0.7	6
29	Antibody screening at reduced <scp>pH</scp> enables preferential selection of potently neutralizing antibodies targeting <scp>SARSâ€CoV</scp> â€2. AICHE Journal, 2021, 67, e17440.	1.8	4
30	Ad26.COV2.S boosts antibody and T-cell responses following BNT162b2 vaccination. Emerging Microbes and Infections, 2021, 10, 2220-2222.	3.0	2
31	Paired Heavy and Light Chain Signatures Contribute to Potent SARS-CoV-2 Neutralization in Public Antibody Responses. SSRN Electronic Journal, 0, , .	0.4	1
32	Composition of the Putative Prepore Complex of <i>Bacillus thuringiensis</i> Cry1Ab Toxin. Advances in Biological Chemistry, 2015, 05, 179-188.	0.2	1
33	HIV Latency Reversal Agents: Effective for Cure?. HIV Current Research, 2018, 03, .	0.1	0